
The Legend of Drunken Query Master
The Apprentice's Journey

Jay Pipes
Community Relations Manager

MySQL
jay@mysql.com

http://jpipes.com

These slides released under the Creative Commons AttributionNoncommercialShare Alike 3.0 License

mailto:jay@mysql.com
http://jpipes.com/

09/18/08 zendcon08 - legend of drunken query master 2

before we start

● Who am I?
– Just some dude who works at MySQL

(eh...Sun)
– Oh, I co-wrote a book on MySQL
– Active PHP/MySQL community member
– Other than that, semi-normal geek,

married, 2 dogs, 2 cats, blah blah
● This talk is about understanding and

tuning SQL applications

09/18/08 zendcon08 - legend of drunken query master 3

notes on this presentation

● Got a quick question?
– Just ask it.

● Got a longer question?
– Wait until the break or when the speaker forgets

what he is talking about.
● Pictures of cute and cuddly animals are used

frequently throughout presentation as a blatant
attempt to improve your review of the speaker
– If you hate cute and cuddly animals, you may want

to leave now.

09/18/08 zendcon08 - legend of drunken query master 4

drunken query master says...

“...thou shalt
not fight with
the database,
for it is thy

friend”

can't we all just get along?

http://www.ringelkater.de/ringel_witzig/cat_dog_mouse.jpg

09/18/08 zendcon08 - legend of drunken query master 5

your friend, the database...

● Recognize the strengths and also the weaknesses
of your database

● No database is perfect -- deal with it, you're not
perfect either

● Think of both big things and small things
– BIG: Architecture, surrounding servers, caching
– SMALL: SQL coding, join rewrites, server config

09/18/08 zendcon08 - legend of drunken query master 6

expect the unexpected

● Some big things produce
small results
– Hardware changes can produce

smaller improvements than
many expect

● Some small things produce
humungonormous results
– Rewriting a poorly-constructed

query can improve
performance or scalability
more than you might expect

09/18/08 zendcon08 - legend of drunken query master 7

Clients

Parser

Query
Cache

Pluggable Storage Engine API

MyISAM InnoDB MEMORY Falcon Archive PBXT SolidDB
Cluster
(Ndb)

Net I/O

“Packaging”

system architecture of MySQL

Query
Cache

Optimizer

09/18/08 zendcon08 - legend of drunken query master 8

keys to MySQL system architecture

● Understand storage engine abilities and
weaknesses

● Understand how the query cache and important
buffers works

● Understand optimizer's limitations
● Understand what should and should not be done

at the application level
● If you understand the above, you'll start to see

the database as a friend and not an enemy

09/18/08 zendcon08 - legend of drunken query master 9

drunken query master says...

“...poor
skills in

schema-kido
shall lead to

crushing
defeat”

http://www.cold-moon.com/images/Motivators/GMs/defeat.jpg

09/18/08 zendcon08 - legend of drunken query master 10

the schema

● Basic foundation of
performance

● Everything else depends on it
● Choose your data types wisely
● Conquer the schema through

partitioning The Leaning Tower of Pisa
from Wikipedia:

“Although intended to stand vertically, the
tower began leaning to the southeast
soon after the onset of construction in
1173 due to a poorly laid foundation
and loose substrate that has allowed the
foundation to shift direction.”

09/18/08 zendcon08 - legend of drunken query master 11

smaller, smaller, smaller

The Pygmy Marmoset
world's smallest monkey

This picture is a cheap stunt
intended to induce kind feelings
for the presenter.

Oh, and I totally want one of
these guys for a pet.

The more records you can fit into a single page of
memory/disk, the faster your seeks and scans will be

● Do you really need that BIGINT?

● Use INT UNSIGNED for IPv4 addresses

● Use VARCHAR carefully

– Converted to CHAR when used in a
temporary table

● Use TEXT sparingly

– Consider separate tables
● Use BLOBs very sparingly

– Use the filesystem for what it was intended

09/18/08 zendcon08 - legend of drunken query master 12

handling IPv4 addresses

CREATE TABLE Sessions (
 session_id INT UNSIGNED NOT NULL AUTO_INCREMENT
, ip_address INT UNSIGNED NOT NULL // Compare to CHAR(15)...
, session_data TEXT NOT NULL
, PRIMARY KEY (session_id)
, INDEX (ip_address)
) ENGINE=InnoDB;

// Find all sessions coming from a local subnet
SELECT
 session_id
, ip_address as ip_raw
, INET_NTOA(ip_address) as ip
, session_data
FROM Sessions
WHERE ip_address
BETWEEN INET_ATON('192.168.0.1')
AND INET_ATON('192.168.0.255');

WHERE ip_address BETWEEN 3232235521 AND 3232235775

// Insert a new dummy record
INSERT INTO Sessions VALUES
(NULL, INET_ATON('192.168.0.2'), 'some session data');

INSERT INTO Session VALUES (NULL, 3232235522, 'some session data');

mysql> SELECT session_id, ip_address as ip_raw, INET_NTOA(ip_address) as ip, session_data
 -> FROM Sessions
 -> WHERE ip_address BETWEEN
 -> INET_ATON('192.168.0.1') AND INET_ATON('192.168.0.255');
+------------+------------+-------------+-------------------+
| session_id | ip_raw | ip | session_data |
+------------+------------+-------------+-------------------+
| 1 | 3232235522 | 192.168.0.2 | some session data |
+------------+------------+-------------+-------------------+

09/18/08 zendcon08 - legend of drunken query master 13

SETs and ENUMs

The Mandelbrot Set
Wikipedia

Rumour has it that the Mandelbrot Set
will be a full-fledged column type in
MySQL 9.1, making for some very
interesting application uses in database
graphics processing...

● Drunken query master is not
a big fan of SET and ENUM

● Sign of poor schema design
● Changing the definition of

either will require a full
rebuild of the table

● Search functions like
FIND_IN_SET() are
inefficient compared to
index operations on a join

09/18/08 zendcon08 - legend of drunken query master 14

how much storage space is consumed?

● With this definition, how many bytes will the
“a” column consume per row?

CREATE TABLE t1 (
 a INT(1) UNSIGNED NOT NULL
);

● The number in parentheses is the ZEROFILL
argument, not the storage space

● INT takes 4 bytes of space

– Regardless of the UNSIGNED or NOT NULL

09/18/08 zendcon08 - legend of drunken query master 15

drunken query master says...

“...table-kee-do
shall show thee

the Path of
(De)Normalization”

Edgar F. Codd
from Wikipedia:

“...while working for IBM, invented the
relational model for database
management, the theoretical basis for
relational databases.”

fifth-degree black-belt in join-fu -->

09/18/08 zendcon08 - legend of drunken query master 16

taking normalization way too far

http://thedailywtf.com/forums/thread/75982.aspx

Hmm......
DateDate?

09/18/08 zendcon08 - legend of drunken query master 17

divide et impera

● Vertical partitioning

– Split tables with many columns
into multiple tables

● Horizontal partitioning

– Split table with many rows into
multiple tables

● Partitioning in MySQL 5.1 is
transparent horizontal partitioning
within the DB...

Niccolò Machiavelli
The Art of War, (1519-1520):

“A Captain ought, among all the other
actions of his, endeavor with every
art to divide the forces of the
enemy, either by making him
suspicious of his men in whom he
trusted, or by giving him cause that he
has to separate his forces, and,
because of this, become weaker.”

...and it's got issues at the moment.

09/18/08 zendcon08 - legend of drunken query master 18

vertical partitioning

● Mixing frequently and infrequently accessed attributes in a
single table?

● Space in buffer pool at a premium?

– Splitting the table allows main records to consume the buffer
pages without the extra data taking up space in memory

● Need FULLTEXT on your text columns?

CREATE TABLE Users (
 user_id INT NOT NULL AUTO_INCREMENT
, email VARCHAR(80) NOT NULL
, display_name VARCHAR(50) NOT NULL
, password CHAR(41) NOT NULL
, first_name VARCHAR(25) NOT NULL
, last_name VARCHAR(25) NOT NULL
, address VARCHAR(80) NOT NULL
, city VARCHAR(30) NOT NULL
, province CHAR(2) NOT NULL
, postcode CHAR(7) NOT NULL
, interests TEXT NULL
, bio TEXT NULL
, signature TEXT NULL
, skills TEXT NULL
, PRIMARY KEY (user_id)
, UNIQUE INDEX (email)
) ENGINE=InnoDB;

CREATE TABLE Users (
 user_id INT NOT NULL AUTO_INCREMENT
, email VARCHAR(80) NOT NULL
, display_name VARCHAR(50) NOT NULL
, password CHAR(41) NOT NULL
, PRIMARY KEY (user_id)
, UNIQUE INDEX (email)
) ENGINE=InnoDB; CREATE TABLE UserExtra (

 user_id INT NOT NULL
, first_name VARCHAR(25) NOT NULL
, last_name VARCHAR(25) NOT NULL
, address VARCHAR(80) NOT NULL
, city VARCHAR(30) NOT NULL
, province CHAR(2) NOT NULL
, postcode CHAR(7) NOT NULL
, interests TEXT NULL
, bio TEXT NULL
, signature TEXT NULL
, skills TEXT NULL
, PRIMARY KEY (user_id)
, FULLTEXT KEY (interests, skills)
) ENGINE=MyISAM;

09/18/08 zendcon08 - legend of drunken query master 19

drunken query master says...

“...thou shalt
employ table-kee-

do in order to
avoid the Fury of
the Query Cache”

Think kittens get angry?
Wait until you see what
the query cache can do.

http://obsidianwings.blogs.com/obsidian_wings/kitten.jpg

09/18/08 zendcon08 - legend of drunken query master 20

the MySQL query cache

Clients

Parser

Optimizer

Query
Cache

Pluggable Storage Engine API

MyISAM InnoDB MEMORY Falcon Archive PBXT SolidDB
Cluster
(Ndb)

Net I/O

“Packaging”

Query
Cache

● You must understand your
application's read/write patterns

● Internal query cache design is a
compromise between CPU usage
and read performance

● Stores the MYSQL_RESULT of a
SELECT along with a hash of the
SELECT SQL statement

● Any modification to any table
involved in the SELECT
invalidates the stored result

● Write applications to be aware
of the query cache

– Use SELECT SQL_NO_CACHE

09/18/08 zendcon08 - legend of drunken query master 21

vertical partitioning ... continued

● Mixing static attributes with frequently updated fields in a single table?

– Thrashing occurs with query cache. Each time an update occurs on any
record in the table, all queries referencing the table are invalidated in
the query cache

● Doing COUNT(*) with no WHERE on an indexed field on an InnoDB table?

– Complications with versioning make full table counts very slow

CREATE TABLE Products (
 product_id INT NOT NULL
, name VARCHAR(80) NOT NULL
, unit_cost DECIMAL(7,2) NOT NULL
, description TEXT NULL
, image_path TEXT NULL
, num_views INT UNSIGNED NOT NULL
, num_in_stock INT UNSIGNED NOT NULL
, num_on_order INT UNSIGNED NOT NULL
, PRIMARY KEY (product_id)
, INDEX (name(20))
) ENGINE=InnoDB;

// Getting a simple COUNT of products
// easy on MyISAM, terrible on InnoDB
SELECT COUNT(*)
FROM Products;

CREATE TABLE Products (
 product_id INT NOT NULL
, name VARCHAR(80) NOT NULL
, unit_cost DECIMAL(7,2) NOT NULL
, description TEXT NULL
, image_path TEXT NULL
, PRIMARY KEY (product_id)
, INDEX (name(20))
) ENGINE=InnoDB;CREATE TABLE ProductCounts (

 product_id INT NOT NULL
, num_views INT UNSIGNED NOT NULL
, num_in_stock INT UNSIGNED NOT NULL
, num_on_order INT UNSIGNED NOT NULL
, PRIMARY KEY (product_id)
) ENGINE=InnoDB;

CREATE TABLE TableCounts (
 total_products INT UNSIGNED NOT NULL
) ENGINE=MEMORY;

09/18/08 zendcon08 - legend of drunken query master 22

drunken query master says...

“...thou shalt
not be afraid of

SQL, for it is
thy strongest

weapon”

09/18/08 zendcon08 - legend of drunken query master 23

coding like a join-fu master

● Be consistent (for crying out
loud)

● Use ANSI SQL coding style
● Stop thinking in terms of

iterators, for loops, while
loops, etc

● Instead, think in terms of sets
● Break complex SQL statements

(or business requests) into
smaller, manageable chunks

Did you know?
from Wikipedia:

Join-fu is a close cousin to Jun Fan
Gung Fu, the method of martial arts
Bruce Lee began teaching in 1959.

OK, not really.

09/18/08 zendcon08 - legend of drunken query master 24

SQL coding consistency

● Tabs and spacing
● Upper and lower case
● Keywords, function names
● Some columns aliased, some not
SELECT
 a.first_name, a.last_name, COUNT(*) as num_rentals
FROM actor a
 INNER JOIN film f
 ON a.actor_id = fa.actor_id
GROUP BY a.actor_id
ORDER BY num_rentals DESC, a.last_name, a.first_name
LIMIT 10;

vs.

select first_name, a.last_name,
count(*) AS num_rentals
FROM actor a join film f on a.actor_id = fa.actor_id
 group by a.actor_id order by
num_rentals DESC, a.last_name, a.first_name
LIMIT 10;

● Consider your
teammates

● Like your
programming code,
SQL is meant to be
read, not written

Nothing pisses off
the query master like
inconsistent SQL code!

09/18/08 zendcon08 - legend of drunken query master 25

join-fu guidelines

● Always try variations on a
theme

● Beware of join hints
– Can get “out of date”

● Just because it can be done
in a single SQL statement
doesn't mean it should

● Always test and benchmark
your solutions
– Use http_load (simple and

effective for web stuff)

See, even bears practice join-fu.

09/18/08 zendcon08 - legend of drunken query master 26

ANSI vs. Theta SQL coding style

SELECT
 a.first_name, a.last_name, COUNT(*) as num_rentals
FROM actor a
 INNER JOIN film f
 ON a.actor_id = fa.actor_id
 INNER JOIN film_actor fa
 ON fa.film_id = f.film_id
 INNER JOIN inventory I
 ON f.film_id = i.film_id
 INNER JOIN rental r
 ON r.inventory_id = i.inventory_id
GROUP BY a.actor_id
ORDER BY num_rentals DESC, a.last_name, a.first_name
LIMIT 10;

SELECT
 a.first_name, a.last_name, COUNT(*) as num_rentals
FROM actor a, film f, film_actor fa, inventory i, rental r
WHERE a.actor_id = fa.actor_id
AND fa.film_id = f.film_id
AND f.film_id = i.film_id
GROUP BY a.actor_id
ORDER BY num_rentals DESC, a.last_name, a.first_name
LIMIT 10;

ANSI STYLE

Explicitly declare JOIN
conditions using the ON

clause

Theta STYLE

Implicitly declare JOIN
conditions in the WHERE

clause

SELECT
 a.first_name, a.last_name, COUNT(*) as num_rentals
FROM actor a, film f, film_actor fa, inventory i, rental r
WHERE a.actor_id = fa.actor_id
AND fa.film_id = f.film_id
AND f.film_id = i.film_id
AND r.inventory_id = i.inventory_id
GROUP BY a.actor_id
ORDER BY num_rentals DESC, a.last_name, a.first_name
LIMIT 10;

09/18/08 zendcon08 - legend of drunken query master 27

why ANSI style's join-fu kicks Theta style's ass

● MySQL only supports the INNER and CROSS join
for the Theta style
– But, MySQL supports the INNER, CROSS, LEFT, RIGHT,

and NATURAL joins of the ANSI style
– Mixing and matching both styles can lead to hard-to-

read SQL code
● It is supremely easy to miss a join condition with

Theta style
– especially when joining many tables together
– Leaving off a join condition in the WHERE clause will

lead to a cartesian product (not a good thing!)

09/18/08 zendcon08 - legend of drunken query master 28

drunken query master says...

“...Without the strength of
explain-jitsu, thou shall perish in
the Meadow of Misunderstanding”

chased by the Evil Army of
Correlated Subqueries through
the Meadow of
Misunderstanding -->

http://i240.photobucket.com/albums/ff188/catsncheese/normal_domokuns-kitten.jpg

09/18/08 OSCON 2007 - Target Practice 29

EXPLAIN Basics

● Provides the execution plan chosen by the MySQL
optimizer for a specific SELECT statement

● Simply append the word EXPLAIN to the beginning
of your SELECT statement

● Each row in output represents a set of information
used in the SELECT
– A real schema table

– A virtual table (derived table) or temporary table

– A subquery in SELECT or WHERE

– A unioned set

09/18/08 OSCON 2007 - Target Practice 30

EXPLAIN columns

● select_type - type of “set” the data in this row contains

● table - alias (or full table name if no alias) of the table or
derived table from which the data in this set comes

● type - “access strategy” used to grab the data in this set

● possible_keys - keys available to optimizer for query

● keys - keys chosen by the optimizer

● rows - estimate of the number of rows in this set

● Extra - information the optimizer chooses to give you

● ref - shows the column used in join relations

Example EXPLAIN output

09/18/08 OSCON 2007 - Target Practice 32

Example #1 - the const access type

EXPLAIN SELECT * FROM rental WHERE rental_id = 13\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: rental
 type: const
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 1
 Extra:
1 row in set (0.00 sec)

09/18/08 OSCON 2007 - Target Practice 33

Constants in the optimizer

● a field indexed with a unique non-nullable key
● The access strategy of system is related to const

and refers to when a table with only a single
row is referenced in the SELECT

● Can be propogated across joined columns

09/18/08 OSCON 2007 - Target Practice 34

Example #2 - constant propogation

EXPLAIN SELECT r.*, c.first_name, c.last_name
FROM rental r INNER JOIN customer c
ON r.customer_id = c.customer_id WHERE r.rental_id = 13\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: r
 type: const
possible_keys: PRIMARY,idx_fk_customer_id
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 1
 Extra:
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: c
 type: const
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
 ref: const /* Here is where the propogation occurs...*/
 rows: 1
 Extra:
2 rows in set (0.00 sec)

09/18/08 OSCON 2007 - Target Practice 35

Example #3 - the range access type

SELECT * FROM rental
WHERE rental_date BETWEEN '2005-06-14' AND '2005-06-16'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: rental
 type: range
possible_keys: rental_date
 key: rental_date
 key_len: 8
 ref: NULL
 rows: 364
 Extra: Using where
1 row in set (0.00 sec)

09/18/08 OSCON 2007 - Target Practice 36

Considerations with range accesses

● Index must be available on the field operated
upon by a range operator

● If too many records are estimated to be
returned by the condition, the range
optimization won't be used
– index or full table scan will be used instead

● The indexed field must not be operated on by a
function call! (Important for all indexing)

09/18/08 OSCON 2007 - Target Practice 37

The scan vs. seek dilemma

● A seek operation, generally speaking, jumps into a random
place -- either on disk or in memory -- to fetch the data
needed.

– Repeat for each piece of data needed from disk or
memory

● A scan operation, on the other hand, will jump to the start
of a chunk of data, and sequentially read data -- either
from disk or from memory -- until the end of the chunk of
data

● For large amounts of data, scan operations tend to be more
efficient than multiple seek operations

09/18/08 OSCON 2007 - Target Practice 38

Example #4 - Full table scan

EXPLAIN SELECT * FROM rental
WHERE rental_date BETWEEN '2005-06-14' AND '2005-06-21'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: rental
 type: ALL
possible_keys: rental_date /* larger range forces scan choice */
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 16298
 Extra: Using where
1 row in set (0.00 sec)

09/18/08 OSCON 2007 - Target Practice 39

Why full table scans pop up

● No WHERE condition (duh.)
● No index on any field in WHERE condition
● Poor selectivity on an indexed field
● Too many records meet WHERE condition
● < MySQL 5.0 and using OR in a WHERE clause
● Using SELECT * FROM

09/18/08 OSCON 2007 - Target Practice 40

Example #5 - Full index scan

EXPLAIN SELECT rental_id, rental_date FROM rental\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: rental
 type: index
possible_keys: NULL
 key: rental_date
 key_len: 13
 ref: NULL
 rows: 16325
 Extra: Using index
1 row in set (0.00 sec)

CAUTION!

Extra=“Using index”
is NOT the same as

type=”index”

09/18/08 OSCON 2007 - Target Practice 41

Example #6 - eq_ref strategy

EXPLAIN SELECT r.*, c.first_name, c.last_name
FROM rental r INNER JOIN customer c ON r.customer_id = c.customer_id
WHERE r.rental_date BETWEEN '2005-06-14' AND '2005-06-16'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: r
 type: range
possible_keys: idx_fk_customer_id,rental_date
 key: rental_date
 key_len: 8
 ref: NULL
 rows: 364
 Extra: Using where
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: c
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
 ref: sakila.r.customer_id
 rows: 1
 Extra:
2 rows in set (0.00 sec)

09/18/08 OSCON 2007 - Target Practice 42

When eq_ref pops up

● Joining two sets on a field where
– One side has unique, non-nullable index
– Other side has at least a non-nullable index

● In example #6, an eq_ref access strategy was
chosen because a unique, non-nullable index is
available on customer.customer_id and an index
is available on the rental.customer_id field

09/18/08 OSCON 2007 - Target Practice 43

Nested loops join algorithm

● For each record in outermost set
– Fetch a record from the next set via a join column

condition
– Repeat until done with outermost set

● Main algorithm in optimizer
– Main work in 5.1+ is in the area of subquery

optimization and additional join algorithms like
semi- and merge joins

09/18/08 OSCON 2007 - Target Practice 44

Example #7 - ref strategy

EXPLAIN SELECT * FROM rental
WHERE rental_id IN (10,11,12)
AND rental_date = '2006-02-01' \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: rental
 type: ref
possible_keys: PRIMARY,rental_date
 key: rental_date
 key_len: 8
 ref: const
 rows: 1
 Extra: Using where
1 row in set (0.02 sec)

09/18/08 OSCON 2007 - Target Practice 45

OR conditions and the index merge

● Index merge best thing to happen in optimizer
for 5.0

● Allows optimizer to use more than one index to
satisfy a join condition
– Prior to MySQl 5.0, only one index
– In case of OR conditions in a WHERE, MySQL <5.0

would use a full table scan

09/18/08 OSCON 2007 - Target Practice 46

Example #8 - index_merge strategy

EXPLAIN SELECT * FROM rental
WHERE rental_id IN (10,11,12)
OR rental_date = '2006-02-01' \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: rental
 type: index_merge
possible_keys: PRIMARY,rental_date
 key: rental_date,PRIMARY
 key_len: 8,4
 ref: NULL
 rows: 4
 Extra: Using sort_union(rental_date,PRIMARY); Using where
1 row in set (0.02 sec)

09/18/08 zendcon08 - legend of drunken query master 47

tired? break time...

http://jimburgessdesign.com/comics/images/news_pics/passed_out_corgi.jpg

09/18/08 zendcon08 - legend of drunken query master 48

ok, now that you've had a quick snack...

09/18/08 zendcon08 - legend of drunken query master 49

drunken query master says...

“...thou shall befriend the
Index, for it is a Master of Join-

fu and will protect thee from the
Ravages of the Table Scan”

best coffee table. ever. -->

http://technabob.com/blog/wp-content/uploads/2008/05/nes_coffee_table.jpg

09/18/08 PHP-Quebec 2008 50

indexes – your schema's phone book

● Speed up SELECTs, but slow down
modifications

● Ensure indexes on columns used in
WHERE, ON, GROUP BY clauses

● Always ensure JOIN conditions are
indexed (and have identical data
types)

● Be careful of the column order

● Look for covering indexes

– Occurs when all fields in one table
needed by a SELECT are available in
an index record

The Yellow Pages
from Wikipedia:

“The name and concept of "Yellow
Pages" came about in 1883, when a
printer in Cheyenne, Wyoming
working on a regular telephone
directory ran out of white paper and
used yellow paper instead”

09/18/08 PHP-Quebec 2008 51

selectivity – the key to good, er...keys

● Selectivity

– % of distinct values in a column
– S=d/n
– Unique/primary always 1.0

● If column has a low selectivity

– It may still be put in a multi-column index
● As a prefix?
● As a suffix?
● Depends on the application

09/18/08 PHP-Quebec 2008 52

remove crappy or redundant indexes

SELECT
 t.TABLE_SCHEMA AS `db`, t.TABLE_NAME AS `table`, s.INDEX_NAME AS `index name`
 , s.COLUMN_NAME AS `field name`, s.SEQ_IN_INDEX `seq in index`, s2.max_columns AS `# cols`
 , s.CARDINALITY AS `card`, t.TABLE_ROWS AS `est rows`
 , ROUND(((s.CARDINALITY / IFNULL(t.TABLE_ROWS, 0.01)) * 100), 2) AS `sel %`
FROM INFORMATION_SCHEMA.STATISTICS s
 INNER JOIN INFORMATION_SCHEMA.TABLES t
 ON s.TABLE_SCHEMA = t.TABLE_SCHEMA AND s.TABLE_NAME = t.TABLE_NAME
 INNER JOIN (
 SELECT TABLE_SCHEMA, TABLE_NAME, INDEX_NAME, MAX(SEQ_IN_INDEX) AS max_columns
 FROM INFORMATION_SCHEMA.STATISTICS WHERE TABLE_SCHEMA != 'mysql'
 GROUP BY TABLE_SCHEMA, TABLE_NAME, INDEX_NAME
) AS s2
 ON s.TABLE_SCHEMA = s2.TABLE_SCHEMA AND s.TABLE_NAME = s2.TABLE_NAME AND s.INDEX_NAME = s2.INDEX_NAME
WHERE t.TABLE_SCHEMA != 'mysql' /* Filter out the mysql system DB */
AND t.TABLE_ROWS > 10 /* Only tables with some rows */
AND s.CARDINALITY IS NOT NULL /* Need at least one non-NULL value in the field */
AND (s.CARDINALITY / IFNULL(t.TABLE_ROWS, 0.01)) < 1.00 /* unique indexes are perfect anyway */
ORDER BY `sel %`, s.TABLE_SCHEMA, s.TABLE_NAME /* DESC for best non-unique indexes */
LIMIT 10;

+--------------+------------------+----------------------+-------------+--------------+---------------+------+-------+-------+
| TABLE_SCHEMA | TABLE_NAME | INDEX_NAME | COLUMN_NAME | SEQ_IN_INDEX | COLS_IN_INDEX | CARD | ROWS | SEL % |
+--------------+------------------+----------------------+-------------+--------------+---------------+------+-------+-------+
worklog	amendments	text	text	1	1	1	33794	0.00
planetmysql	entries	categories	categories	1	3	1	4171	0.02
planetmysql	entries	categories	title	2	3	1	4171	0.02
planetmysql	entries	categories	content	3	3	1	4171	0.02
sakila	inventory	idx_store_id_film_id	store_id	1	2	1	4673	0.02
sakila	rental	idx_fk_staff_id	staff_id	1	1	3	16291	0.02
worklog	tasks	title	title	1	2	1	3567	0.03
worklog	tasks	title	description	2	2	1	3567	0.03
sakila	payment	idx_fk_staff_id	staff_id	1	1	6	15422	0.04
mysqlforge	mw_recentchanges	rc_ip	rc_ip	1	1	2	996	0.20
+--------------+------------------+----------------------+-------------+--------------+---------------+------+-------+-------+

http://forge.mysql.com/tools/tool.php?id=85

09/18/08 zendcon08 - legend of drunken query master 53

indexed columns and functions don't mix

mysql> EXPLAIN SELECT * FROM film WHERE title LIKE 'Tr%'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 type: range
possible_keys: idx_title
 key: idx_title
 key_len: 767
 ref: NULL
 rows: 15
 Extra: Using where

mysql> EXPLAIN SELECT * FROM film WHERE LEFT(title,2) = 'Tr' \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 951
 Extra: Using where

● A fast range access strategy is chosen by the optimizer, and the
index on title is used to winnow the query results down

● A slow full table scan (the ALL access strategy) is used because
a function (LEFT) is operating on the title column

09/18/08 zendcon08 - legend of drunken query master 54

solving multiple issues in a SELECT query

SELECT * FROM Orders WHERE TO_DAYS(CURRENT_DATE()) – TO_DAYS(order_created) <= 7;

● First, we are operating on an indexed column (order_created) with a function – let's
fix that:

● Although we rewrote the WHERE expression to remove the operating function, we still
have a non-deterministic function in the statement, which eliminates this query from
being placed in the query cache – let's fix that:

SELECT * FROM Orders WHERE order_created >= CURRENT_DATE() - INTERVAL 7 DAY;

SELECT * FROM Orders WHERE order_created >= '2008-01-11' - INTERVAL 7 DAY;

● We replaced the function with a constant (probably using our application
programming language). However, we are specifying SELECT * instead of the actual
fields we need from the table.

● What if there is a TEXT field in Orders called order_memo that we don't need to see?
Well, having it included in the result means a larger result set which may not fit into
the query cache and may force a disk-based temporary table

SELECT order_id, customer_id, order_total, order_created
FROM Orders WHERE order_created >= '2008-01-11' - INTERVAL 7 DAY;

09/18/08 zendcon08 - legend of drunken query master 55

drunken query master says...

“...join-fu is thy best defense
against the Evil Army of
Correlated Subqueries”

general in the
evil army -->

09/18/08 zendcon08 - legend of drunken query master 56

set-wise problem solving

“Show the last payment information for each customer”
CREATE TABLE `payment` (
 `payment_id` smallint(5) unsigned NOT NULL auto_increment,
 `customer_id` smallint(5) unsigned NOT NULL,
 `staff_id` tinyint(3) unsigned NOT NULL,
 `rental_id` int(11) default NULL,
 `amount` decimal(5,2) NOT NULL,
 `payment_date` datetime NOT NULL,
 `last_update` timestamp NOT NULL ... on update CURRENT_TIMESTAMP,
 PRIMARY KEY (`payment_id`),
 KEY `idx_fk_staff_id` (`staff_id`),
 KEY `idx_fk_customer_id` (`customer_id`),
 KEY `fk_payment_rental` (`rental_id`),
 CONSTRAINT `fk_payment_rental` FOREIGN KEY (`rental_id`)
 REFERENCES `rental` (`rental_id`),
 CONSTRAINT `fk_payment_customer` FOREIGN KEY (`customer_id`)
 REFERENCES `customer` (`customer_id`) ,
 CONSTRAINT `fk_payment_staff` FOREIGN KEY (`staff_id`)
 REFERENCES `staff` (`staff_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8

http://forge.mysql.com/wiki/SakilaSampleDB

http://forge.mysql.com/wiki/SakilaSampleDB

09/18/08 zendcon08 - legend of drunken query master 57

thinking in terms of foreach loops...

OK, for each customer, find the maximum date the
payment was made and get that payment record(s)

mysql> EXPLAIN SELECT
 -> p.*
 -> FROM payment p
 -> WHERE p.payment_date =
 -> (SELECT MAX(payment_date)
 -> FROM payment
 -> WHERE customer_id=p.customer_id
 ->)\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: p
 type: ALL
 rows: 16567
 Extra: Using where
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: payment
 type: ref
possible_keys: idx_fk_customer_id
 key: idx_fk_customer_id
 key_len: 2
 ref: sakila.p.customer_id
 rows: 15
2 rows in set (0.00 sec)

● A correlated
subquery in the
WHERE clause is used

● It will be re-
executed for each
row in the primary
table (payment)

● Produces 623 rows in
an average of 1.03s

09/18/08 zendcon08 - legend of drunken query master 58

what about adding an index?

Will adding an index on (customer_id, payment_date)
make a difference?

mysql> EXPLAIN SELECT
 -> p.*
 -> FROM payment p
 -> WHERE p.payment_date =
 -> (SELECT MAX(payment_date)
 -> FROM payment
 -> WHERE customer_id=p.customer_id
 ->)\G
*************************** 1. row ************************
 id: 1
 select_type: PRIMARY
 table: p
 type: ALL
 rows: 16567
 Extra: Using where
*************************** 2. row ************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: payment
 type: ref
possible_keys: idx_fk_customer_id
 key: idx_fk_customer_id
 key_len: 2
 ref: sakila.p.customer_id
 rows: 15

2 rows in set (0.00 sec)

mysql> EXPLAIN SELECT
 -> p.*
 -> FROM payment p
 -> WHERE p.payment_date =
 -> (SELECT MAX(payment_date)
 -> FROM payment
 -> WHERE customer_id=p.customer_id
 ->)\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: p
 type: ALL
 rows: 15485
 Extra: Using where
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: payment
 type: ref
possible_keys: idx_fk_customer_id,ix_customer_paydate
 key: ix_customer_paydate
 key_len: 2
 ref: sakila.p.customer_id
 rows: 14
 Extra: Using index
2 rows in set (0.00 sec)

● Produces 623 rows in
an average of 0.45s

● Produces 623 rows in
an average of 1.03s

09/18/08 zendcon08 - legend of drunken query master 59

thinking in terms of sets...

OK, I have one set of last payments dates and another set
containing payment information (so, how do I join these sets?)

mysql> EXPLAIN SELECT
 -> p.*
 -> FROM (
 -> SELECT customer_id, MAX(payment_date) as last_order
 -> FROM payment
 -> GROUP BY customer_id
 ->) AS last_orders
 -> INNER JOIN payment p
 -> ON p.customer_id = last_orders.customer_id
 -> AND p.payment_date = last_orders.last_order\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 type: ALL
 rows: 599
*************************** 2. row ***************************
 id: 1
 select_type: PRIMARY
 table: p
 type: ref
possible_keys: idx_fk_customer_id,ix_customer_paydate
 key: ix_customer_paydate
 key_len: 10
 ref: last_orders.customer_id,last_orders.last_order
 rows: 1
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: payment
 type: range
 key: ix_customer_paydate
 key_len: 2
 rows: 1107
 Extra: Using index for group-by
3 rows in set (0.02 sec)

● A derived table, or
subquery in the
FROM clause, is used

● The derived table
represents a set:
last payment dates
of customers

● Produces 623 rows in
an average of 0.03s

09/18/08 zendcon08 - legend of drunken query master 60

drunken query master says...

“...join-fu shall assist you in
your N:M relationships”

...but it won't
help your other

relationships
http://onlineportaldating.com/wp-content/uploads/2007/10/leaving.bmp

09/18/08 zendcon08 - legend of drunken query master 61

working with “mapping” or N:M tables

CREATE TABLE Project (
 project_id INT UNSIGNED NOT NULL AUTO_INCREMENT
, name VARCHAR(50) NOT NULL
, url TEXT NOT NULL
, PRIMARY KEY (project_id)
) ENGINE=MyISAM;

CREATE TABLE Tag2Project (
 tag INT UNSIGNED NOT NULL
, project INT UNSIGNED NOT NULL
, PRIMARY KEY (tag, project)
, INDEX rv_primary (project, tag)
) ENGINE=MyISAM;

CREATE TABLE Tags (
 tag_id INT UNSIGNED NOT NULL AUTO_INCREMENT
, tag_text VARCHAR(50) NOT NULL
, PRIMARY KEY (tag_id)
, INDEX (tag_text)
) ENGINE=MyISAM;

● The next few slides will walk through examples
of querying across the above relationship
– dealing with OR conditions
– dealing with AND conditions

09/18/08 zendcon08 - legend of drunken query master 62

dealing with OR conditions

Grab all project names which are tagged with “mysql” OR “php”

mysql> SELECT p.name FROM Project p
 -> INNER JOIN Tag2Project t2p
 -> ON p.project_id = t2p.project
 -> INNER JOIN Tag t
 -> ON t2p.tag = t.tag_id
 -> WHERE t.tag_text IN ('mysql','php');
+---+
| name |
+---+
| phpMyAdmin |
...
| MySQL Stored Procedures Auto Generator |
+---+
90 rows in set (0.05 sec)

+----+-------------+-------+--------+----------------------+--------------+---------+-------------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+----------------------+--------------+---------+-------------+------+-------------+
1	SIMPLE	t	range	PRIMARY,uix_tag_text	uix_tag_text	52	NULL	2	Using where
1	SIMPLE	t2p	ref	PRIMARY,rv_primary	PRIMARY	4	t.tag_id	10	Using index
1	SIMPLE	p	eq_ref	PRIMARY	PRIMARY	4	t2p.project	1	
+----+-------------+-------+--------+----------------------+--------------+---------+-------------+------+-------------+
3 rows in set (0.00 sec)

● Note the order in which the optimizer chose to join the tables is
exactly the opposite of how we wrote our SELECT

09/18/08 zendcon08 - legend of drunken query master 63

dealing with AND conditions

Grab all project names which are tagged with “storage engine”
AND “plugin”

● A little more complex, let's
grab the project names
which match both the
“mysql” tag and the “php”
tag

● Here is perhaps the most
common method – using a
HAVING COUNT(*) against a
GROUP BY on the
relationship table

● EXPLAIN on next page...

mysql> SELECT p.name FROM Project p
 -> INNER JOIN (
 -> SELECT t2p.project
 -> FROM Tag2Project t2p
 -> INNER JOIN Tag t
 -> ON t2p.tag = t.tag_id
 -> WHERE t.tag_text IN ('plugin','storage engine')
 -> GROUP BY t2p.project
 -> HAVING COUNT(*) = 2
 ->) AS projects_having_all_tags
 -> ON p.project_id = projects_having_all_tags.project;
+-----------------------------------+
| name |
+-----------------------------------+
| Automatic data revision |
| memcache storage engine for MySQL |
+-----------------------------------+
2 rows in set (0.01 sec)

09/18/08 zendcon08 - legend of drunken query master 64

the dang filesort

● The EXPLAIN plan shows
the execution plan using
a derived table
containing the project
IDs having records in the
Tag2Project table with
both the “plugin” and
“storage engine” tags

● Note that a filesort is
needed on the Tag table
rows since we use the
index on tag_text but
need a sorted list of
tag_id values to use in
the join

*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 type: ALL
 rows: 2
*************************** 2. row ***************************
 id: 1
 select_type: PRIMARY
 table: p
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: projects_having_all_tags.project
 rows: 1
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: t
 type: range
possible_keys: PRIMARY,uix_tag_text
 key: uix_tag_text
 key_len: 52
 rows: 2
 Extra: Using where; Using index; Using temporary; Using filesort
*************************** 4. row ***************************
 id: 2
 select_type: DERIVED
 table: t2p
 type: ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: mysqlforge.t.tag_id
 rows: 1
 Extra: Using index
4 rows in set (0.00 sec)

09/18/08 zendcon08 - legend of drunken query master 65

removing the filesort using CROSS JOIN

● We can use a CROSS JOIN technique to remove the filesort

– We winnow down two copies of the Tag table (t1 and t2) by
supplying constants in the WHERE condition

● This means no need for a sorted list of tag IDs since we already
have the two tag IDs available from the CROSS JOINs...so no
more filesort

mysql> EXPLAIN SELECT p.name
 -> FROM Project p
 -> CROSS JOIN Tag t1
 -> CROSS JOIN Tag t2
 -> INNER JOIN Tag2Project t2p
 -> ON p.project_id = t2p.project
 -> AND t2p.tag = t1.tag_id
 -> INNER JOIN Tag2Project t2p2
 -> ON t2p.project = t2p2.project
 -> AND t2p2.tag = t2.tag_id
 -> WHERE t1.tag_text = "plugin"
 -> AND t2.tag_text = "storage engine";
+----+-------------+-------+--------+----------------------+--------------+---------+------------------------------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+----------------------+--------------+---------+------------------------------+------+-------------+
1	SIMPLE	t1	const	PRIMARY,uix_tag_text	uix_tag_text	52	const	1	Using index
1	SIMPLE	t2	const	PRIMARY,uix_tag_text	uix_tag_text	52	const	1	Using index
1	SIMPLE	t2p	ref	PRIMARY,rv_primary	PRIMARY	4	const	9	Using index
1	SIMPLE	t2p2	eq_ref	PRIMARY,rv_primary	PRIMARY	8	const,mysqlforge.t2p.project	1	Using index
1	SIMPLE	p	eq_ref	PRIMARY	PRIMARY	4	mysqlforge.t2p2.project	1	Using where
+----+-------------+-------+--------+----------------------+--------------+---------+------------------------------+------+-------------+
5 rows in set (0.00 sec)

09/18/08 zendcon08 - legend of drunken query master 66

another technique for dealing with ANDs

● Do two separate queries – one which grabs tag_id
values based on the tag text and another which does
a self-join after the application has the tag_id values
in memory

Benefit #1

● If we assume the Tag2Project table is updated 10X
more than the Tag table is updated, the first query
on Tag will be cached more effectively in the query
cache

Benefit #2

● The EXPLAIN on the self-join query is much better
than the HAVING COUNT(*) derived table solution

mysql> SELECT t.tag_id FROM Tag t
 > WHERE tag_text IN ("plugin","storage engine");
+--------+
| tag_id |
+--------+
| 173 |
| 259 |
+--------+
2 rows in set (0.00 sec)

mysql> SELECT p.name FROM Project p
 -> INNER JOIN Tag2Project t2p
 -> ON p.project_id = t2p.project
 -> AND t2p.tag = 173
 -> INNER JOIN Tag2Project t2p2
 -> ON t2p.project = t2p2.project
 -> AND t2p2.tag = 259;
+-----------------------------------+
| name |
+-----------------------------------+
| Automatic data revision |
| memcache storage engine for MySQL |
+-----------------------------------+
2 rows in set (0.00 sec)

mysql> EXPLAIN SELECT p.name FROM Project p
 -> INNER JOIN Tag2Project t2p
 -> ON p.project_id = t2p.project
 -> AND t2p.tag = 173
 -> INNER JOIN Tag2Project t2p2
 -> ON t2p.project = t2p2.project
 -> AND t2p2.tag = 259;
+----+-------------+-------+--------+--------------------+---------+---------+------------------------------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+--------------------+---------+---------+------------------------------+------+-------------+
1	SIMPLE	t2p	ref	PRIMARY,rv_primary	PRIMARY	4	const	9	Using index
1	SIMPLE	t2p2	eq_ref	PRIMARY,rv_primary	PRIMARY	8	const,mysqlforge.t2p.project	1	Using index
1	SIMPLE	p	eq_ref	PRIMARY	PRIMARY	4	mysqlforge.t2p2.project	1	Using where
+----+-------------+-------+--------+--------------------+---------+---------+------------------------------+------+-------------+

09/18/08 zendcon08 - legend of drunken query master 67

understanding LEFT-join-fu

CREATE TABLE Project (
 project_id INT UNSIGNED NOT NULL AUTO_INCREMENT
, name VARCHAR(50) NOT NULL
, url TEXT NOT NULL
, PRIMARY KEY (project_id)
) ENGINE=MyISAM;

CREATE TABLE Tag2Project (
 tag INT UNSIGNED NOT NULL
, project INT UNSIGNED NOT NULL
, PRIMARY KEY (tag, project)
, INDEX rv_primary (project, tag)
) ENGINE=MyISAM;

CREATE TABLE Tags (
 tag_id INT UNSIGNED NOT NULL AUTO_INCREMENT
, tag_text VARCHAR(50) NOT NULL
, PRIMARY KEY (tag_id)
, INDEX (tag_text)
) ENGINE=MyISAM;

● Get the tag phrases which are not related to any
project

● Get the tag phrases which are not related to any
project OR the tag phrase is related to project
#75

● Get the tag phrases not related to project #75

09/18/08 zendcon08 - legend of drunken query master 68

LEFT join-fu: starting simple...the NOT EXISTS

mysql> EXPLAIN SELECT
 -> t.tag_text
 -> FROM Tag t
 -> LEFT JOIN Tag2Project t2p
 -> ON t.tag_id = t2p.tag
 -> WHERE t2p.project IS NULL
 -> GROUP BY t.tag_text\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t
 type: index
possible_keys: NULL
 key: uix_tag_text
 key_len: 52
 rows: 1126
 Extra: Using index
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: t2p
 type: ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: mysqlforge.t.tag_id
 rows: 1
 Extra: Using where; Using index; Not exists
2 rows in set (0.00 sec)

mysql> SELECT
 -> t.tag_text
 -> FROM Tag t
 -> LEFT JOIN Tag2Project t2p
 -> ON t.tag_id = t2p.tag
 -> WHERE t2p.project IS NULL
 -> GROUP BY t.tag_text;
+--------------------------------------+
| tag_text |
+--------------------------------------+
<snip>
+--------------------------------------+
153 rows in set (0.01 sec)

● Get the tag phrases
which are not
related to any
project

● LEFT JOIN ... WHERE
 x IS NULL

● WHERE x IS NOT
NULL would yield tag
phrases that are
related to a project
– But, then, you'd want

to use an INNER JOIN

09/18/08 zendcon08 - legend of drunken query master 69

LEFT join-fu: a little harder

mysql> EXPLAIN SELECT
 -> t.tag_text
 -> FROM Tag t
 -> LEFT JOIN Tag2Project t2p
 -> ON t.tag_id = t2p.tag
 -> WHERE t2p.project IS NULL
 -> OR t2p.project = 75
 -> GROUP BY t.tag_text\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t
 type: index
 key: uix_tag_text
 key_len: 52
 ref: NULL
 rows: 1126
 Extra: Using index
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: t2p
 type: ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: mysqlforge.t.tag_id
 rows: 1
 Extra: Using where; Using index
2 rows in set (0.00 sec)

mysql> SELECT
 -> t.tag_text
 -> FROM Tag t
 -> LEFT JOIN Tag2Project t2p
 -> ON t.tag_id = t2p.tag
 -> WHERE t2p.project IS NULL
 -> OR t2p.project = 75
 -> GROUP BY t.tag_text;
+--------------------------------------+
| tag_text |
+--------------------------------------+
<snip>
+--------------------------------------+
184 rows in set (0.00 sec)

● Get the tag phrases
which are not
related to any
project OR the tag
phrase is related to
project #75

● No more NOT EXISTS
optimization :(

● But, isn't this
essentially a UNION?

09/18/08 zendcon08 - legend of drunken query master 70

LEFT join-fu: a UNION returns us to
optimization

mysql> EXPLAIN SELECT
 -> t.tag_text
 -> FROM Tag t
 -> LEFT JOIN Tag2Project t2p
 -> ON t.tag_id = t2p.tag
 -> WHERE t2p.project IS NULL
 -> GROUP BY t.tag_text
 -> UNION ALL
 -> SELECT
 -> t.tag_text
 -> FROM Tag t
 -> INNER JOIN Tag2Project t2p
 -> ON t.tag_id = t2p.tag
 -> WHERE t2p.project = 75\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t
 type: index
 key: uix_tag_text
 key_len: 52
 rows: 1126
 Extra: Using index
*************************** 2. row ***************************
 id: 1
 select_type: PRIMARY
 table: t2p
 type: ref
 key: PRIMARY
 key_len: 4
 ref: mysqlforge.t.tag_id
 rows: 1
 Extra: Using where; Using index; Not exists
*************************** 3. row ***************************
 id: 2
 select_type: UNION
 table: t2p
 type: ref
possible_keys: PRIMARY,rv_primary
 key: rv_primary
 key_len: 4
 ref: const
 rows: 31
 Extra: Using index

*************************** 4. row ***************************
 id: 2
 select_type: UNION
 table: t
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: mysqlforge.t2p.tag
 rows: 1
 Extra:
*************************** 5. row ***************************
 id: NULL
 select_type: UNION RESULT
 table: <union1,2>
5 rows in set (0.00 sec)

mysql> SELECT
 -> t.tag_text
 -> FROM Tag t
 -> LEFT JOIN Tag2Project t2p
 -> ON t.tag_id = t2p.tag
 -> WHERE t2p.project IS NULL
 -> GROUP BY t.tag_text
 -> UNION ALL
 -> SELECT
 -> t.tag_text
 -> FROM Tag t
 -> INNER JOIN Tag2Project t2p
 -> ON t.tag_id = t2p.tag
 -> WHERE t2p.project = 75;
+--------------------------------------+
| tag_text |
+--------------------------------------+
<snip>
+--------------------------------------+
184 rows in set (0.00 sec)

09/18/08 zendcon08 - legend of drunken query master 71

LEFT join-fu: the trickiest part...

mysql> SELECT
 -> t.tag_text
 -> FROM Tag t
 -> LEFT JOIN Tag2Project t2p
 -> ON t.tag_id = t2p.tag
 -> WHERE t2p.tag IS NULL
 -> AND t2p.project= 75
 -> GROUP BY t.tag_text;
Empty set (0.00 sec)

mysql> EXPLAIN SELECT
 -> t.tag_text
 -> FROM Tag t
 -> LEFT JOIN Tag2Project t2p
 -> ON t.tag_id = t2p.tag
 -> WHERE t2p.tag IS NULL
 -> AND t2p.project= 75
 -> GROUP BY t.tag_text\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: NULL
 type: NULL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: Impossible WHERE noticed after reading const tables
1 row in set (0.00 sec)

● Get the tag phrases
which are not
related to project
#75

● Shown to the left is
the most common
mistake made with
LEFT JOINs

● The problem is
where the filter on
project_id is done...

09/18/08 zendcon08 - legend of drunken query master 72

LEFT join-fu: the trickiest part...fixed

mysql> EXPLAIN SELECT
 -> t.tag_text
 -> FROM Tag t
 -> LEFT JOIN Tag2Project t2p
 -> ON t.tag_id = t2p.tag
 -> AND t2p.project= 75
 -> WHERE t2p.tag IS NULL
 -> GROUP BY t.tag_text\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t
 type: index
possible_keys: NULL
 key: uix_tag_text
 key_len: 52
 rows: 1126
 Extra: Using index
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: t2p
 type: eq_ref
possible_keys: PRIMARY,rv_primary
 key: rv_primary
 key_len: 8
 ref: const,mysqlforge.t.tag_id
 rows: 1
 Extra: Using where; Using index; Not exists
2 rows in set (0.00 sec)

mysql> SELECT
 -> t.tag_text
 -> FROM Tag t
 -> LEFT JOIN Tag2Project t2p
 -> ON t.tag_id = t2p.tag
 -> AND t2p.project= 75
 -> WHERE t2p.tag IS NULL
 -> GROUP BY t.tag_text;
+-----------------+
| tag_text |
+-----------------+
<snip>
+--+
674 rows in set (0.01 sec)

● Filters on the LEFT
joined set must be
placed in the ON
clause

● Filter is applied
before the LEFT JOIN
and NOT EXISTs is
evaluated, resulting
in fewer rows in the
evaluation, and
better performance

some intermediate join-fu

Practical examples, but meant to show techniques
of SQL problem solving

● Handling hierarchical queries
– Adjacency lists

– Nested sets

● Reporting query techniques
– Running sums and aggregates

– Ranking return results

09/18/08 zendcon08 - legend of drunken query master 74

drunken query master says...

“...join-fu and the Nested Sets
Model shall shall deliver thee

from the Adjacency List Model”

querying hierarchical structures

● Graphs and trees don't fit the relational model
well

● Common solutions tend to use either of two
techniques
– Recursion (yuck.)
– Application layer coding (ok.)

● A good solution blends two common tree-storage
models
– Adjacency list
– Nested sets

adjacency list model

● Very common but doesn't
scale

● Easy to query for:
– Who is my parent?
– Who are my children?

● Difficult to query for:
– How many levels are in my

tree?
– Who are ALL the descendants

of my grandfather's brother?

CREATE TABLE People (
 person_id INT UNSIGNED NOT NULL
, name VARCHAR(50) NOT NULL
, parent INT UNSIGNED NULL
, PRIMARY KEY (person_id)
, INDEX (parent)
) ENGINE=InnoDB;

mysql> SELECT * FROM People;
+-----------+-------------------+--------+
| person_id | name | parent |
+-----------+-------------------+--------+
1	Great grandfather	NULL
2	Grandfather	1
3	Great Uncle	1
4	Father	2
5	Uncle	2
6	Me	4
7	Brother	4
+-----------+-------------------+--------+
7 rows in set (0.00 sec)

adjacency list model – easy stuff

● Who is my parent?

● Who are my
father's children?

● Who are my
father's father's
grandchildren?

mysql> SELECT p2.*
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.parent = p2.person_id
 -> WHERE p1.person_id = 6;
+-----------+--------+--------+
| person_id | name | parent |
+-----------+--------+--------+
| 4 | Father | 2 |
+-----------+--------+--------+

mysql> SELECT p.*
 -> FROM People p
 -> WHERE p.parent = 4;
+-----------+---------+--------+
| person_id | name | parent |
+-----------+---------+--------+
| 6 | Me | 4 |
| 7 | Brother | 4 |
+-----------+---------+--------+

mysql> SELECT p3.*
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.person_id = p2.parent
 -> INNER JOIN People p3
 -> ON p2.person_id = p3.parent
 -> WHERE p1.person_id = 2;
+-----------+---------+--------+
| person_id | name | parent |
+-----------+---------+--------+
| 6 | Me | 4 |
| 7 | Brother | 4 |
+-----------+---------+--------+

adjacency list model – hard stuff

● How many levels
in my hierarchy?
– Told you. Yuck.

● Find all
descendants of a
specific person
– Double yuck.

● Basic join-fu how
not to do SQL?
– Avoid cursors,

iterators, etc

DELIMITER //
CREATE PROCEDURE get_max_levels()
BEGIN
SET @lowest_parent :=
 (SELECT MAX(parent) FROM People WHERE parent IS NOT NULL);
SET @levels := 1;

SET @current_parent = @lowest_parent;

WHILE @current_parent IS NOT NULL DO
 SET @current_parent :=
 (SELECT parent FROM People WHERE person_id = @current_parent);
 SET @levels := @levels + 1;
END WHILE;

SELECT @levels;
END //

DELIMITER //
CREATE PROCEDURE get_node_descendants(IN to_find INT)
BEGIN
DROP TEMPORARY TABLE IF EXISTS child_ids;
CREATE TEMPORARY TABLE child_ids (child_id INT UNSIGNED NOT NULL);
 ...
WHILE @last_count_children > @new_count_children DO
 ...
 INSERT INTO child_ids
 SELECT person_id FROM new_children WHERE blah blah...;
 SET @new_count_children := (SELECT COUNT(*) FROM child_ids);
END WHILE;

SELECT p.* FROM People
INNER JOIN child_ids
ON person_id = child_id;

END //

nested sets model

● Uncommon because it is
hard to grasp at first, but it
really scales

● Easy to query for:
– How many levels are in my

tree?
– Who are ALL the descendants

of my grandfather's brother?
– Various complex queries that

would be impossible for the
adjacency list model

CREATE TABLE People (
 person_id INT UNSIGNED NOT NULL
, name VARCHAR(50) NOT NULL
, left_side INT UNSIGNED NOT NULL
, right_side INT UNSIGNED NOT NULL
, PRIMARY KEY (person_id)
, INDEX (parent)
) ENGINE=InnoDB;

mysql> SELECT * FROM People;
+-----------+-------------------+--------+
| person_id | name | parent |
+-----------+-------------------+--------+
1	Great grandfather	NULL
2	Grandfather	1
3	Great Uncle	1
4	Father	2
5	Uncle	2
6	Me	4
7	Brother	4
+-----------+-------------------+--------+
7 rows in set (0.00 sec)

nested sets model

● Each node in tree stores info about its location
– Each node stores a “left” and a “right”

● For the root node, “left” is always 1, “right” is always
2*n, where n is the number of nodes in the tree

● For all other nodes, “right” is always equal to the “left” +
(2*n) + 1, where n is the total number of child nodes of
this node

– So...all “leaf” nodes in a tree have a “right” = “left” + 1

– Allows SQL to “walk” the tree's nodes
● OK, got all that? :)

nested sets model

Great
Grandfather

Grandfather
Great
Uncle

UncleFather

Me Brother

1

2

3

4 5 6 7

8 9 10

11 12 13

14

● For the root node, “left” is always 1, “right” is always
2*n, where n is the number of nodes in the tree

● For all other nodes, “right” is always equal to the
“left” + (2*n) + 1, where n is the total number of child
nodes of this node

so, how is this easier?

● Easy to query for:
– How many levels are in my tree?
– Who are ALL the descendants of my grandfather's

brother?
– Various complex queries that would be impossible for

the adjacency list model
● Efficient processing via set-based logic

– Versus inefficient iterative/recursive model
● Basic operation is a BETWEEN predicate in a self

join condition

nested list model – sets, not procedures...

● What is the depth
of each node?
– Notice the

BETWEEN
predicate in use

● What about the
EXPLAIN output?
– Oops
– Add an index...

mysql> SELECT p1.person_id, p1.name, COUNT(*) AS depth
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.left_side BETWEEN p2.left_side AND p2.right_side
 -> GROUP BY p1.person_id;
+-----------+-------------------+-------+
| person_id | name | depth |
+-----------+-------------------+-------+
1	Great grandfather	1
2	Grandfather	2
3	Great Uncle	2
4	Father	3
5	Uncle	3
6	Me	4
7	Brother	4
+-----------+-------------------+-------+

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: p1
 type: ALL
 rows: 7
 Extra: Using temporary; Using filesort
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: p2
 type: ALL
 rows: 7
 Extra: Using where

ALTER TABLE People ADD UNIQUE INDEX ix_nsm (left_side, right_side);

09/18/08 zendcon08 - legend of drunken query master 84

drunken query master says...

“...thou shalt build queries
based on results you already

know are correct”

find the max depth of the whole tree

● How do I find the max depth of the tree?
– If the last query showed the depth of each

node...then we build on the last query
mysql> SELECT MAX(level) AS max_level FROM (
 -> SELECT p1.person_id, COUNT(*) AS level
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.left_side BETWEEN p2.left_side AND p2.right_side
 -> GROUP BY p1.person_id
 ->) AS derived;
+-----------+
| max_level |
+-----------+
| 4 |
+-----------+
1 row in set (0.00 sec)

● Use this technique when solving set-based
problems
– Build on a known correct set and then intersect,

union, aggregate, etc against that set

good, but could be better...

● Using covering
indexes for
everything
– “Using index”

● Unfortunately,
we've got a
filesort
– “Using filesort”

mysql> EXPLAIN SELECT MAX(level) AS max_level FROM (
 -> SELECT p1.person_id, COUNT(*) AS level
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.left_side BETWEEN p2.left_side AND p2.right_side
 -> GROUP BY p1.person_id
 ->) AS derived\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 type: ALL
 rows: 7
*************************** 2. row ***************************
 id: 2
 select_type: DERIVED
 table: p1
 type: index
possible_keys: ix_nsm
 key: ix_nsm
 key_len: 8
 rows: 7
 Extra: Using index; Using temporary; Using filesort
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: p2
 type: index
possible_keys: ix_nsm
 key: ix_nsm
 key_len: 8
 rows: 7
 Extra: Using where; Using index

attacking unnecessary filesorts

● GROUP BY
implicitly orders
the results

● If you don't need
that sort, remove
it it using ORDER
BY NULL

mysql> EXPLAIN SELECT MAX(level) AS max_level FROM (
 -> SELECT p1.person_id, COUNT(*) AS level
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.left_side BETWEEN p2.left_side AND p2.right_side
 -> GROUP BY p1.person_id
 -> ORDER BY NULL
 ->) AS derived\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 type: ALL
 rows: 7
*************************** 2. row ***************************
 id: 2
 select_type: DERIVED
 table: p1
 type: index
possible_keys: ix_nsm
 key: ix_nsm
 key_len: 8
 rows: 7
 Extra: Using index; Using temporary;
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: p2
 type: index
possible_keys: ix_nsm
 key: ix_nsm
 key_len: 8
 rows: 7
 Extra: Using where; Using index

finding a node's descendants

● Who are ALL my
grandfather's descendants?
– Remember the nasty recursive

solution we had?

mysql> SELECT p1.name
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.left_side
 -> BETWEEN p2.left_side AND p2.right_side
 -> WHERE p2.person_id = @to_find
 -> AND p1.person_id <> @to_find;
+---------+
| name |
+---------+
| Father |
| Uncle |
| Me |
| Brother |
+---------+
4 rows in set (0.00 sec)

mysql> EXPLAIN SELECT p1.name
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.left_side BETWEEN p2.left_side AND p2.right_side
 -> WHERE p2.person_id = @to_find
 -> AND p1.person_id <> @to_find\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: p2
 type: const
possible_keys: PRIMARY,ix_nsm
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 1
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: p1
 type: range
possible_keys: PRIMARY,ix_nsm
 key: PRIMARY
 key_len: 4
 rows: 4
 Extra: Using where

finding all nodes above a specific node

● Who are ALL my
grandfather's predecessors?

● Look familiar to the last
query?
– What has changed?

● What about now?

mysql> SELECT p2.name
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.left_side
 -> BETWEEN p2.left_side AND p2.right_side
 -> WHERE p1.person_id = @to_find
 -> AND p2.person_id <> @to_find;
+-------------------+
| name |
+-------------------+
| Great grandfather |
+-------------------+
1 row in set (0.00 sec)

SELECT p2.name
FROM People p1
INNER JOIN People p2
ON p1.left_side
BETWEEN p2.left_side AND p2.right_side
WHERE p1.person_id = @to_find
AND p2.person_id <> @to_find;

summarizing trees and graphs

● Lots more we could do with trees
– How to insert/delete/move a node in the tree
– How to connect the tree to aggregate reporting

results
– But not right now...

● Best practice
– Use both adjacency list and nested sets for various

query types
● Little storage overhead
● Best of both worlds

09/18/08 zendcon08 - legend of drunken query master 91

drunken query master says...

“...thou shalt study the practice of
set-based formula replacement”

http://www.cat-pics.net/data/media/5/bottle%20drinking%20baby%20cat%20pics.jpg

formula replacement

● Take a formula you know works, and replace
the variables with known sets

● Reduces errors significantly
● Forces you to think in terms of sets, instead of

those darn FOR loops
● Examples:

– Running aggregates
– Ranking of results

reporting techniques

● Running aggregates
– Without user variables
– Running sums and averages

● Ranking of results
– Using user variables
– Using JOINs!

running aggregates

● When we want to have a column which “runs” a
sum during the result set

SELECT
 MONTHNAME(created) AS Month
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created);
+----------+-------+
| Month | Added |
+----------+-------+
January	1
February	1
March	11
April	8
May	18
June	3
+----------+-------+
6 rows in set (0.00 sec)

????

+----------+-------+-------+
| Month | Added | Total |
+----------+-------+-------+
January	1	1
February	1	2
March	11	13
April	8	21
May	18	39
June	3	42
+----------+-------+-------+
6 rows in set (0.00 sec)

basic formula for running aggregates

● Join a set (table) to itself using a >= predicate
– ON x1.key >= x2.key

● Problem, though, when we are working with
pre-aggregated data
– Obviously, you can't do two GROUP BYs...

SELECT
 x1.key
, x1.some_column
, AGGREGATE_FN(x2.some_column) AS running_aggregate
FROM x AS x1
INNER JOIN x AS x2
ON x1.key >= x2.key
GROUP BY x1.key;

replacing sets in the running aggregate formula

● Stick to the formula,
but replace sets x1 and
x2 with your pre-
aggregated sets as
derived tables
– The right shows

replacing x with derived

SELECT
 x1.key
, x1.some_column
, AGGREGATE_FN(x2.some_column)
FROM x AS x1
INNER JOIN x AS x2
ON x1.key >= x2.key
GROUP BY x1.key;

SELECT
 x1.key
, x1.some_column
, AGGREGATE_FN(x2.some_column)
FROM (
SELECT
 MONTH(created) AS MonthNo
, MONTHNAME(created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created)
) AS x1
INNER JOIN (
SELECT
 MONTH(created) AS MonthNo
, MONTHNAME(created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created)
) AS x2
ON x1.key >= x2.key
GROUP BY x1.key;

finally, replace SELECT, ON and outer GROUP
BY

● Replace the greyed-out area with the correct
fields

SELECT
 x1.key
, x1.some_column
, AGGREGATE_FN(x2.some_column)
FROM (
SELECT
 MONTH(created) AS MonthNo
, MONTHNAME(created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created)
) AS x1
INNER JOIN (
SELECT
 MONTH(created) AS MonthNo
, MONTHNAME(created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created)
) AS x2
ON x1.key >= x2.key
GROUP BY x1.key;

SELECT
x1.MonthNo
, x1.MonthName
, x1.Added
, SUM(x2.Added) AS RunningTotal
FROM (
SELECT
 MONTH(created) AS MonthNo
, MONTHNAME(created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created)
) AS x1
INNER JOIN (
SELECT
 MONTH(created) AS MonthNo
, MONTHNAME(created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created)
) AS x2
ON x1.MonthNo >= x2.MonthNo
GROUP BY x1.MonthNo;

and the running results...

● Easy enough to add running averages
– Simply add a column for AVG(x2.Added)

● Lesson to learn: stick to a known formula, then
replace formula elements with known sets of
data (Keep it simple!)

+---------+-----------+-------+--------------+
| MonthNo | MonthName | Added | RunningTotal |
+---------+-----------+-------+--------------+
1	January	1	1
2	February	1	2
3	March	11	13
4	April	8	21
5	May	18	39
6	June	3	42
+---------+-----------+-------+--------------+
6 rows in set (0.00 sec)

ranking of results

● Using user variables
– We set a @rank user variable and increment it for

each returned result
● Very easy to do in both SQL and in your

programming language code
– But, in SQL, you can use that produced set to join

with other results...

ranking with user variables

● Easy enough
– But what about ties in

the ranking?
● Notice that some of

the films have
identical prices, and
so should be tied...
– Go ahead and try to

produce a clean way of
dealing with ties using
user variables...

mysql> SET @rank = 0;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT film_id, LEFT(title, 30) as title
 -> , rental_rate, (@rank:= @rank + 1) as rank
 -> FROM film
 -> ORDER BY rental_rate DESC
 -> LIMIT 10;
+---------+----------------------+-------------+------+
| film_id | title | rental_rate | rank |
+---------+----------------------+-------------+------+
243	DOORS PRESIDENT	7.77	1
93	BRANNIGAN SUNRISE	7.70	2
321	FLASH WARS	7.50	3
938	VELVET TERMINATOR	7.50	4
933	VAMPIRE WHALE	7.49	5
246	DOUBTFIRE LABYRINTH	7.45	6
253	DRIFTER COMMANDMENTS	7.44	7
676	PHILADELPHIA WIFE	7.44	8
961	WASH HEAVENLY	7.41	9
219	DEEP CRUSADE	7.40	10
+---------+----------------------+-------------+------+
10 rows in set (0.00 sec)

Hmm, I have to
wonder what

“Deep Crusade” is
about ...

ranking with SQL – the formula

● Again, we use a formula
to compute ranked
results

● Technique: use a known
formulaic solution and
replace formula values
with known result sets

● The formula takes ties
into account with the >=
predicate in the join
condition

SELECT
x1.key_field
, x1.other_field
, COUNT(*) AS rank
FROM x AS x1
INNER JOIN x AS x2
 ON x1.rank_field <= x2.rank_field
GROUP BY
x1.key_field
ORDER BY
x1.rank_field DESC;

replace variables in the formula

SELECT
x1.key_field
, x1.other_field
, COUNT(*) AS rank
FROM x AS x1
INNER JOIN x AS x2
 ON x1.rank_field <= x2.rank_field
GROUP BY
x1.key_field
ORDER BY
x1.rank_field DESCC
LIMIT 10;

SELECT
x1.film_id
, x1.title
, x1.rental_rate
, COUNT(*) AS rank
FROM film AS x1
INNER JOIN film AS x2
 ON x1.rental_rate <= x2.rental_rate
GROUP BY
x1.film_id
ORDER BY
x1.rental_rate DESC
LIMIT 10;

+---------+----------------------+-------------+------+
| film_id | title | rental_rate | rank |
+---------+----------------------+-------------+------+
243	DOORS PRESIDENT	7.77	1
93	BRANNIGAN SUNRISE	7.70	2
938	VELVET TERMINATOR	7.50	4
321	FLASH WARS	7.50	4
933	VAMPIRE WHALE	7.49	5
246	DOUBTFIRE LABYRINTH	7.45	6
676	PHILADELPHIA WIFE	7.44	8
253	DRIFTER COMMANDMENTS	7.44	8
961	WASH HEAVENLY	7.41	9
219	DEEP CRUSADE	7.40	10
+---------+----------------------+-------------+------+

● Ties are now accounted
for

● Easy to grab a “window”
of the rankings

– Just change LIMIT and
OFFSET

refining the performance...

● EXPLAIN produces:
+----+-------------+-------+------+---------------+------+---------+------+------+---------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+---------------------------------+
| 1 | SIMPLE | x2 | ALL | PRIMARY | NULL | NULL | NULL | 952 | Using temporary; Using filesort |
| 1 | SIMPLE | x1 | ALL | PRIMARY | NULL | NULL | NULL | 952 | Using where |
+----+-------------+-------+------+---------------+------+---------+------+------+---------------------------------+

● And the query ran in 1.49s (that's bad, mkay...)
● No indexes being used

– We add an index on film (film_id, rental_rate)
+-------+-------+-----------------+-----------------+---------+------+------+---+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+-------+-------+-----------------+-----------------+---------+------+------+---+
| x2 | index | ix_film_id | ix_film_id_rate | 4 | NULL | 967 | Using index; Using temporary; Using filesort |
| x1 | ALL | ix_rate_film_id | NULL | NULL | NULL | 967 | Using where |
+-------+-------+-----------------+-----------------+---------+------+------+---+

● Results: slightly better performance of 0.80s

– But, different GROUP and ORDER BY makes it slow

resources and thank you!

● PlanetMySQL
– 300+ writers on MySQL topics
– http://planetmysql.com

● MySQL Forge
– Code snippets, project listings,

wiki, worklog
– http://forge.mysql.org

Baron Schwartz
http://xaprb.com

MySQL performance guru and co-
author of High Performance MySQL,
2nd Edition (O'Reilly, 2008)

“xarpb” is Baron spelled on a Dvorak
keyboard...

http://planetmysql.com/
http://forge.mysql.org/

