A Drizzle Code Excursion

Jay Pipes

jaypipes@gmail.com
* http://joinfu.com

¢
0

¢
@4

These slides released under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 License

Drizzle is a Community

Being a Drizzler

9 .
&% Some things to remember...

* No blame
* No shame
* Be open and transparent

* Learn something from someone? Pass it on...
- By adding to the wiki (http://drizzle.org/wiki/)
- By sharing it with another contributor
- By blogging about it
- By posting what you learn to the mailing list

* There is no such thing as a silly question

NO TROLLS.

1
L’
I
- _— -
- ” g
- -
> -
P -~
C i =
A 1
|. |
- -
R 2 Camew

Managing Your Code

Launchpad and BZR

Lol g Launchpad.net

* The Drizzle community focal-point
- http://launchpad.net/drizzle
* Join the drizzle-developers team:

- http://launchpad.net/~drizzle-developers

- Once on the team, you'll be able to push BZR
branches to the main Drizzle code repository

Launchpad.net

* Code management

e Task

(blueprint) management

* Bug reporting

* Translations (Rosetta)
* FAQ functionality

- htt
to-

- htt
to-

D://www.joinfu.com/2008/08/a-contributors-guide-
launchpadnet-part-1-getting-started/

D:/ /www.joinfu.com/2008/08/a-contributors-guide-

launchpadnet-part-2-code-management/

ﬂ?ﬁ Understanding how BZR isn't SVN

‘l
4 L]

* Drizzle developers use BZR for source control
* |t's a distributed version control system

* [t's NOT subversion, and takes some getting
used to

- But it's easy to use once you get used to it ;)
* Remember, there is no speen “central sources”

e Code lives in branches

* Branches live in a repository

e_\h Creating a local BZR branch

[
L [

* You create a branch on your local workstation
by branching an existing branch:

bzr branch |p:drizzle working
* What does the above do?

- Creates a local (to your workstation) branch called
working which is derived from the development
series’ default branch on Launchpad.net

- FYI: development series default branch is called
trunk

- FYI: there is another series on Launchpad.net called

staging. We push code to staging before it goes into
trunk.

@i Making code changes

‘l
L

* You make changes to your local branch with an
editor, just like any other source control system

* |f you add a new file to the source code, you
must tell BZR that you've done so:

bzr add drizzled/my_new_file.cc

 The above would tell bzr to add the file
my_new_file.cc in the drizzled directory to
source control

% Committing your changes

‘l
L [

* When done making changes, commit them:
bzr commit

* The above will commit your changes to source
control and open up your default editor so that
you can type a comment describing your
changes

* When you save and close your editor, a
changeset will be produced and saved by BZR

Lol g More on committing

* When you bzr commit, you are committing your
changes locally

- You'll learn how to push those changes shortly...

* You can automatically add a comment to your
commit (and not open an editor) with the -m
option:

bzr commit -m “Small changes to XXX”

Best Practice #1

* Be as descriptive as possible for your commit
comments

- Allows others to better understand your code

- They allow you to have a decent history of why you
made certain changes

* Good comment:

- “Fix issue where xyz struct on little-endian machines
was incorrectly stored to disk. Fixes Bug #221333”

- “Fixes endian”

aex Publishing your branch

* Must be a member of the Drizzle Developers
team

* You will push your branch up to Launchpad:

bzr push lp:~Suser/drizzle/Sbranchname

* Where Suser is your username on
Launchpad.net

* Example of me pushing a branch called
“timezones”

bzr push lp:~jaypipes/drizzle/timezones

Lol g Taking a look at a branch

* Once a branch is pushed to Launchpad.net, you
can give someone a link to it:

- http://code.launchpad.net/~Suser/drizzle/
Sbranchname

* Or...someone else can branch your published
branch! Your friend does:

bzr branch lp:~Suser/drizzle/Sbranchname
* And branches your code...

ﬁ?ﬁ Proposing your branch for merging

‘l
4 L]

* What good is your code if it lives all by itself?

* Get your code reviewed and merged into the
“mainline”

* You must request your branch to be merged

* Go to your branch on Launchpad.net:

- http://code.launchpad.net/~Suser/drizzle/
Sbranchname

ﬂ?ﬁ Proposing your branch for merging

‘l
4 L]

* Click “Propose for merging into another branch”
* Select lp:drizzle

* Write a comment about the code in your branch
* Click Propose Merge button

* Email sent to drizzle-developers to review your
code

* Code review done online
- Don't worry, we don't bite :)

'y Best Practice #2

* Launchpad Blueprints are a way to track
progress on tasks you work on

* Create detailed blueprints for stuff you work on
and you can:

- Assign the blueprint to yourself

- Link your branch to the blueprint

- Track progress of your work on a task
- Request mentoring on your task

- Offer mentoring to someone else!

Inside the Code

Overview of the Drizzle Code Base

drizzledump drizzle client

arizze
driver

libdrizzle and protocol stack

kernel

plugin APIs

_
session

scheduler
plugin

authentication storage engine

plugin

plugin

@z; Directory organization

* /client

- Client programs (drizzle.cc, drizzledump.cc etc)
* /config

- Scripts such as autorun.sh for the build process
* /extra

- Contains my_print_defaults.cc

- Will be going away
* /gnulib

- Portability headers

e_\h Directory organization (cont'd)

[
L [

* /mystrings

- Character set handling library

- Comes from MySQL's strings directory

- May go away with move to full C++ UTF8
* /mysys

- MySQL portability/system library

- Many things removed from original MySQL mysys
library

- You should take care when using any function in here
* Check for a standard library prototype first!

e_\h Directory organization (cont'd)

[
L [

* /support-files
- Various utility scripts
* /tests

- Unit and functional test cases and suites

- As a contributor, you will want to familiarize yourself
with this directory! :)

e /drizzled

- ALL kernel code
- Optimizer, parser, runtime, plugin APIs

Lol g /drizzled (kernel code)

* /drizzled/atomic

- Portable C++ atomic<> implementation
* /drizzled/message

- Google Protobuffer proto definitions
* /drizzled/utf8

- C++ UTF8 thin library

* /drizzled/util
- Bits and pieces of utility code

&y /drizzled (cont'd)

* /drizzled/plugin

- Plugin base interface class definitions
* /drizzled/item

- [tem derived classes
 /drizzled/field

- Field storage classes
* /drizzled/function

- Built-in SQL functions

.@.‘h /plugin (module code)

P
P a”

* Lots of plugin examples and default
implementations

- Authentication

- Replication

- Serial event log writing
- Logging

- Session scheduling

- Pluggable functions

- Storage engines

* BSD licensed, written in pure C by Eric Day

libdrizzle

* Client/server communication protocol

* Clean, stack-based approach
- http://launchpad.net/libdrizzle

* Requirement for developing Drizzle:
bzr branch lp:libdrizzle libdrizzle

cd
ma
sud

ibdrizzle; ./config/autorun.sh; ./configure
Ke && make check

o make install

A Word About Style

Consistent Rules for Coding

$ Code Style Rules

*Yes, these are enforced in code review... :)
* Consistency is the key

* Nobody agrees with all of the style, but
everyone should follow it

* Otherwise the code is very difficult to navigate
* No TABs

* TABs should be expanded as spaces

* 2 space indentation

"_.‘2; Class Names

[
i*

* Pascal casing, no underscores
* Inconsistent in code...cleanup underway

* CORRECT:
class MyClassName;

class My_Class_Name;

class MY_CLASS_NAME;

fl_z:. Class Method Names

* Camel casing, no underscores

* Inconsistent in code...cleanup underway
* CORRECT:

int getSomeValue();

int get_some_value();

int GetSomeValue();

280

) Classes

L]

* Keep class member variable protected or
private unless there is a good reason not to

* Write public accessors and setters for these
member variables

* General rules of class design:

- Only expose the classes’ API
- Only expose what is necessary to expose
- Keep private as much as possible

Lol g Assighment

* Zero spaces before assignment operator
* One and only one space afterwards

* CORRECT:

uint32_t my_counter= 0;

uint32_t my_counter = 0;

uint32_t my_counter= 0;

Lol d Comparison

* One and only one space before and after
comparison operator

* CORRECT:
if (my_counter == 1)

if (my_counter==1)

if (my_counter==1)

i Braces

* Braces should be on their own line
e else should be on its own line

* CORRECT:
if (my_counter == 1)
{
// do something
3
if (my_counter ==1) {

// do something
}

&y Braces (cont'd)

* Classes and namespaces follow same standard
* Same with switch!
* CORRECT:

class MyClass :public SomeOtherClass
{
private:
int my_counter;
b

class MyClass :public SomeOtherClass {
private:
int my_counter;

iE

ﬁ If in doubt...

Check the Wiki:

http://drizzle.org/wiki/Coding_Standards

Under the Hood

Kernel Code Walk-through

'y Drizzle kernel

e Written in C++
- Not C, Not C+

* Responsible for the “runtime” and coordinating
communication between various plugins,
clients, and itself

* Big parts:

- Session handling

- SQL statement parsing and optimization

- Execution of parsed statements

- Registering and communicating with plugins

oy The Session

* Session != OS Thread

* Represents the series of SQL commands
received from a client

* Currently under heavy refactoring
- So don't assume anything about it!
* Defined in /drizzled/session.h

* Contains its own separate memory area, called
a mem_root, for memory allocated that lives
for the lifetime of the Session object

Lol g Session handling

* Sessions are allocated in
handle_connections_sockets()

- see /drizzled/drizzled.cc

* Session pointer is passed to
create_new_thread(Session *)

- see /drizzled/drizzled.cc

* Session pointer is passed to the registered
session scheduler via
scheduler.add_connection(Session *)

- Session scheduler then is responsible for it...

scheduler

receivil handle_one_connection()

see /drizzled/sql_connect.cc

This step calls any
authenticator plugins that have
been registered with the kernel

session->executeStatement()

These last two steps are
repeated while the Session 4

continues to have work to do
session->disconnect()

ﬂn session->executeStatement()

* Lots ‘o stuff happening

* Depends on the command received from the
client

* Eventually, the mysql_execute_command()
function is reached, which dispatches the
execution to the drizzled::Statement subclass
created in the parser

- Command is an integer SQLCOM_XXX
- See /drizzled/sql_parse.cc

 The actual drizzled::Statement subclass has its
execute() method called

&:ﬁ Parsing of a statement

[
I“l

* Most SQLCOM_XXX commands have a
corresponding string of SQL text passed to the
execute_sqlcom_xxx() method

* This string must be parsed
e Grammar stored in a Yacc file

- see /drizzled/sql_yacc.yy

* DRIZZLEparse() and DRIZZLElex() are the two
functions which handle parsing

- see /drizzled/sql_parse.cc
- see /drizzled/sql_lex.cc

Parsing (cont'd)

* The parsing process actually does a lot more
than just lex and parse the statement’s SQL

string
- This is unfo

rtunate, because it makes

modifying and modularizing the parser difficult

- Work is und

erway to address this

* The parsing

brocess allocates a series of ltem

class objects, and constructs a LEX object which
represents the parsed statement

* The LEX is not an abstract syntax tree, nor is it
a compiled execution plan

aﬁ Parsing (cont'd)

* After the LEX is constructed, it may go through
some post-processing (particularly in the case
of a SELECT statement)

* The LEX is eventually tacked onto the Session so
that routines processing the statement can

refer to its parsec

- see /drizzled/sq
- see /drizzled/sq

structure

_lex.h
| lex.cc

* After this point, the type of command being
executed determines what happens next...

#% Example: SQLCOM_SELECT

* Here is the some code from
mysql_execute_command()

lex->statement->execute();

* The lex->statement is the object that is a
subclass of drizzled::Statement that is built in
the parser

* Each execute() method of the Statement classes
executes a different code path - for SELECT,
the exec_sqlcom_select() method is invoked

&:_!iOptimization of SELECT statements

‘l
4 L]

* During execution of SELECT statements, the
optimizer “module” is called

- It's not really a module, more of a loose collection of
classes and functions in /drizzled/optimizer/

- See /drizzled/sql_select.cc
- See /drizzled/join.cc
- See /drizzled/optimizer/range.cc

* The Join class is the dominant class used in the
optimizer's routines

* There is also a JoinTab class which contains
information about the tables in a SQL join

&:"i Optimization (cont'd)

‘l
L

* |t may not be obvious by looking at the code,
but the Join class’ responsibility is to query the
storage engine (plugin::StorageEngine and
plugin::Cursor) and determine how best to
perform the nested loops join algorithm

* In other words, determine the best access plan
to the data in the storage engine

- choose_plan():/drizzled/join.cc
- best_access_path():/drizzled/join.cc
- Join::prepare(), Join::optimize()

A .
) Execution

‘l
L [

* Nested loops join algorithm

* Implemented using the READ_RECORD struct
and a set of routines in /drizzled/sql_select.cc

- join_read_system()
- join_read_const()

- join_read_key(), etc...

* Think of READ_RECORD as a rudimentary cursor
over the storage engine's raw records

* READ_RECORD has a variable read_record of
type pointer to function, which controls reading

- See /drizzled/records.cc

&3@ The Plugin System

* plugin::Registry singleton
- see /drizzled/plugin/registry.cc

* Allows plugins to register with the kernel as
responders to some type of event

* Each plugin defines an init function which is
passed to the plugin::Registry during
registration

* This function is called when the kernel “spools
up” the plugins on startup

&?’i plugins (cont'd)

‘l
4 L]

* Depending on the plugin, the interface (API)
between the plugin and the kernel may be
IESYY,

* We're working on cleaning up all of these APIs

* We're moving towards having plugins
communicate with the kernel via GPB messages
and not passing internal structure pointers back
and forth

- Example: The transaction log
- see /plugin/transaction_log/*
- see /drizzled/transaction_services.cc

Easy First Steps

Where to start?

aex don't dig too deep!

* |t's best to start with small, attainable goals
* Very easy to go down “ratholes” in the code
* Have clear, well-defined tasks

* Stay out of the optimizer until you've coded on
Drizzle for >3 months ;)

* Lots of little tasks that make it easy to get your
feet wet and feel like you've gotten stuff
accomplished...

Lol g get your feet wet

* Refactoring and code cleanup

- Replacing custom code with STL or libc
- Cleaning up style and indentation problems

* Documenting the large parts of the source code
which are undocumented

- Great way to learn the source code without altering
* Creating test cases

- Look at where the source code is weak on test
coverage: http://drizzle.org/lcov/

- Work on creating tests to cover missing spots or
remove dead code

	title
	being a drizzler
	some things to remember
	no trolls
	Slide 5
	launchpad 1
	launchpad 2
	bzr vs svn
	creating a local bzr branch
	making code changes
	committing your changes
	more on committing
	best practice 1
	Publishing a branch
	Taking a look at a branch
	propose merge 1
	propose merge 2
	Slide 18
	inside the code
	birdseye view
	directory organization
	directory organization 2
	directory organization 3
	drizzled directory
	drizzled directory 2
	plugin directory
	libdrizzle
	code style
	code style rules
	style - class names
	style - method names
	classes
	style - assignment
	style - comparison
	style - braces 1
	style - braces 2
	check the wiki
	under the hood
	drizzle kernel
	session object
	session handling
	session flow
	session->executeStatement
	parsing a statement
	parsing 2
	parsing 3
	mysql_execute_command
	optimizer 1
	optimizer 3
	execution
	plugin system
	plugins 2
	easy first steps
	don't dig too deep
	Slide 55

