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what we'll cover today

Being a Drizzle contributor
The Drizzle source code
Walk-through of a SELECT statement
Plugin development tutorial



  

Being a Drizzle Contributor



  

being a Drizzle contributor

About the Drizzle community
 IRC and the mailing lists
Using Launchpad
Using Bazaar



  

some things to remember...

No blame
No shame
Be open and transparent
Learn something from someone? Pass it on!

− By adding to the wiki (http://drizzle.org/wiki/)
− By sharing it with another contributor
− By blogging about it
− By posting what you learn to the mailing list

There is no such thing as a silly question



  

IRC and the mailing list

 IRC is often best way to get in touch
− irc.freenode.net #drizzle

Mailing list for longer discussions
− Signup here: http://launchpad.net/~drizzle-discuss
− Archive: https://lists.launchpad.net/drizzle-discuss/



  

NO TROLLS.



  

about launchpad

● Written by the folks at Canonical/Ubuntu
● Online platform for project and code 

management
● Features

– Source control services
– Translation services
– Bug tracking
– Task management
– Answers/FAQ functionality



  

your launchpad home page

https://launchpad.net/~jaypipes

● Profile
● Location
● SSH public keys
● Team memberships
● Most active 

projects
● Karma



  

projects on launchpad

● Each project 
has a home 
page, shown 
to the right

● Main project 
team is listed 
as the 
“driver”

https://code.launchpad.net/drizzle



  

project teams on launchpad

https://launchpad.net/~drizzle-developers

● To join the 
team, click 
the team 
link, then 
“Join this 
team”



  

project downloads

https://edge.launchpad.net/mysql-sandbox/+download



  

code management on launchpad

https://code.launchpad.net/drizzle



  

bug tracking on launchpad

https://bugs.launchpad.net/drizzle

https://bugs.launchpad.net/drizzle/+bug/271075



  

answers on launchpad

https://answers.launchpad.net/drizzle

https://answers.edge.launchpad.net/drizzle/+question/44565



  

translations on launchpad

https://translations.launchpad.net/drizzle/trunk/+pots/drizzle



  

task management on launchpad

https://blueprints.launchpad.net/drizzle



  

about bazaar

● Written in C and Python
– C modules for networking and I/O layers
– Python for everything else

● Maintained by a small group of developers with 
community-driven roadmap

● Bazaar is released every ~4 weeks



  

installing bazaar on linux

● Ubuntu/Debian

$> sudo apt-get install bzr bzrtools meld
● Red Hat

$> su -c 'rpm -Uvh 
http://download.fedora.redhat.com/pub/epel/5/i3
86/epel-release-5-2.noarch.rpm'

$> su -c 'yum install bzr'
● Bazaar Tools

– GUI tools and useful plugins
● Meld is a graphical source conflict resolver



  

installing bazaar on windows and mac osx

● Windows:
– Grab the installer from:

http://bazaar-vcs.org/Download

– Run it. :)
● Mac OSX

– Either grab an image from:
http://bazaar-vcs.org/Download

– Or use MacPorts
$> sudo port install bzr bzrtools meld

http://bazaar-vcs.org/Download
http://bazaar-vcs.org/Download


  

distributed source control concepts

● A repository is a collection of branches
– But...there is no central server with single 

controlling repository
● Instead, developers work on their own branches 

of a project's code
● Code is maintained for a project by merging 

branches together
● The project's source tree is merely the 

collection of branches that contain source code



  

decentralized model with gatekeeper

1 Developer creates a local branch from some branch of 
the project

2 Developer makes changes to the local branch

3 Developer commits changes to the local branch

4 Developer pushes a changeset to another branch

5 Gatekeeper (or merge captain) reviews the pushed 
changeset 

6 Gatekeeper merges changes into a branch which serves 
as a “trunk” or active development branch

7 Developer pulls from trunk branch to update locally



  

decentralized model with gatekeeper

1 $> bzr branch lp:drizzle trunk

2 $> vi somefile.cc

3 $> bzr commit somefile.cc -m “code change comment”

4 $> bzr push lp:~username/drizzle/reviews

5 $> bzr branch lp:~username/drizzle/reviews username-reviews

6 $> cd local-trunk && bzr merge ../username-reviews && bzr push

7 $> cd trunk; bzr pull



  

setting up a local development repository

$> mkdir ~/repos

$> cd repos; bzr init-repo drizzle

$> cd drizzle

$> bzr branch lp:drizzle trunk
● To pull in any changesets merged into the trunk 

branch, do this on a periodic basis:

$> cd ~/repos/drizzle/trunk; bzr pull
● Consider scripting the pull in cron



  

working on a bug locally

$> bzr branch trunk bug32124-crash-ps-var

$> cd bug32124-crash-ps-var
● Make code changes

$> bzr commit filename.cc # Repeat as needed
● Enter descriptive comments about the change in 

your editor and save

$> bzr push lp:~username/drizzle/reviews



  

proposing a branch for review

● In Launchpad.net, click “Propose for merging into another 
branch” as shown in the screenshot below:

https://code.launchpad.net/~drizzle-developers/drizzle/enable-tests



  

best practices for using launchpad and bazaar

● Use small, manageable “work units”
– GOOD: “split and enable func_md5 plugin tests”
– BAD: “refactor the server” :)

● Use the Blueprints system to relate common and 
dependent tasks
– Very helpful in organizing larger blueprints with 

smaller, more specific subtasks
● Have a personal “reviews” branch

– Good for small patch reviews for your own code
● Have specific branches for larger tasks



  

small work units

● A blueprint should be small and as descriptive as 
possible

● Blueprints can be created to group smaller tasks 
into a common “super-task”

● Use the “Add dependency” action to link a 
subtask to a super-task

● The super-task will show a graphical 
representation of the dependencies



  

a task with subtasks

https://blueprints.launchpad.net/drizzle/+spec/fix-and-enable-tests



  

using milestones to provide direction

● A milestone is simply a container which acts as a 
“target” for developers

● You can link bugs, blueprints, and branches to a 
milestone

● Multiple milestones can exist simultaneously for 
a project



  

a milestone

https://blueprints.launchpad.net/drizzle/+milestone/cirrus



  

closing a launchpad bug through bazaar

● Extremely useful option to the bzr commit 
command

● Allows you to automatically relate a bug to a 
specific commit in the source tree

● Automatically changes the bug status to fix 
committed

$> bzr commit --fixes=lp:XXXXXX
● Where XXXXXX is the bug ID from Launchpad
● Also prefixes for other bug trackers (see bzr 

manual)



  

merging and resolving conflicts

● Use bzr merge to merge one branch's changes 
into another

● A merge conflict occurs when source files 
cannot be cleanly merged together
– Typically when two developers have edited the same 

lines of the same source file
● Conflicting files will have file.OTHER, file.THIS, 

and file.BASE in the source directory
● Resolve the conflicts using Meld



  

merging one branch into another branch

● To merge, go to the target branch and specify 
the source directory:

$> cd ~/repos/drizzle/enable-tests

$> bzr merge ../trunk
● This would merge trunk's changes into the 

enable-tests branch
● Conflicts listed at end of merge output:

Text conflict in tests/t/func_gconcat.test
Text conflict in tests/t/func_str.test
2 conflicts encountered.



  

using bzr gconflicts

● Conflicts can always be listed with bzr conflicts:
[510][jpipes@serialcoder: /home/jpipes/repos/drizzle/enable-tests]$ bzr conflicts
Text conflict in tests/t/func_gconcat.test
Text conflict in tests/t/func_str.test

● Use Meld to resolve a 
conflict

$> bzr gconflicts
● This will list all files with 

conflicts
● Choose a file to resolve 

and select “meld” from the 
dropdown of utilities



  

using meld to resolve a conflict



  

using meld for visual diffs

● Ctrl-D to jump to the next conflict (Ctrl-E goes back 
one conflict)

● The left-most file is the BASE file, the middle file is the 
local file and the right-most file is the one from the 
merged branch

● Decide how to resolve the conflict and edit the middle 
file (filename.THIS)

● Changes can be applied by editing the files directly or 
by clicking the small arrows in the gray area in 
between the files

● Ctrl-S to save the changes



  

resolving the conflict in bzr

● Tell bzr that you've resolved things
● Then commit

[518][jpipes@serialcoder: enable-tests]$ bzr resolve --all
[525][jpipes@serialcoder: enable-tests]$ bzr commit -m \
"Merge from trunk and resolved conflicts func_gconcat and func_str - simple removal of ZEROFILL args"



  

resources

● Bazaar online manual and user guide
http://doc.bazaar-vcs.org/bzr.dev/en/user-reference/bzr_man.html

http://doc.bazaar-vcs.org/bzr.dev/en/user-guide/index.html

● Launchpad user's wiki
https://help.launchpad.net/

● IRC on Freenode #launchpad and #bzr



  

the one slide on licensing

 I hate talking about licensing
− Everybody has a different opinion...

But here's what matters to you:
− If you contribute code inside the /drizzled directory, 

that code is contributed under the GPL since the 
kernel is derived from MySQL

− If you contribute a plugin implementation or module, 
you can contribute that code under a license of your 
choice

Feel free to get into lots of debate and 
arguments about licensing
− Just not with me



  

A Word About Style

Consistent Rules for Coding



  

Code Style Rules

Yes, these are enforced in code review... :)
Consistency is the key
Nobody agrees with all of the style, but 
everyone should follow it

Otherwise the code is very difficult to navigate
No TABs
TABs should be expanded as spaces
2 space indentation
Use Vim? Check out my vimrc on joinfu.com



  

Class Names

Pascal casing, no underscores
 Inconsistent in code...cleanup underway
CORRECT:

class MyClassName;
 INCORRECT:

class My_Class_Name;
 INCORRECT:

class MY_CLASS_NAME;



  

Class Method Names

Camel casing, no underscores
 Inconsistent in code...cleanup underway
CORRECT:

int getSomeValue();
 INCORRECT:

int get_some_value();
 INCORRECT:

int GetSomeValue();



  

Class Design

Keep class member variable private unless 
there is a good reason not to
− And there really isn't any good reason

Write public accessors and setters for these 
member variables

General rules of class design:
− Only expose the classes' API
− Only expose what is necessary to expose
− RAII

 Use constructors and destructors properly
 Objects should own their own memory



  

Assignment

Zero spaces before assignment operator
One and only one space afterwards
CORRECT:

uint32_t my_counter= 0;
 INCORRECT:

uint32_t my_counter = 0;
 INCORRECT:

uint32_t my_counter= 0;



  

Comparison

One and only one space before and after 
comparison operator

CORRECT:

if (my_counter == 1)
 INCORRECT:

if (my_counter==1)
 INCORRECT:

if ( my_counter== 1 )



  

Braces

Braces should be on their own line
else should be on its own line
CORRECT:
if (my_counter == 1)
{
  // do something
}
 INCORRECT:
if (my_counter == 1) {
  // do something
}



  

Braces (cont'd)

Classes and namespaces follow same standard
Same with switch!
CORRECT:
class MyClass :public SomeOtherClass
{
private:
  int my_counter;
};
 INCORRECT:
class MyClass :public SomeOtherClass {
  private:
  int my_counter;
};



  

If in doubt...

Check the Wiki:

http://drizzle.org/wiki/Coding_Standards



  

Inside the Code

Overview of the Drizzle Code Base



  

directory organization

/client
− Client programs (drizzle.cc, drizzledump.cc etc)

/config
− Scripts such as autorun.sh for the build process

/extra
− Contains my_print_defaults.cc
− Will be going away this summer (yeah! \o/)

/gnulib
− Portability headers



  

directory organization (cont'd)

/support-files
− Various utility scripts

/tests
− Unit and functional test cases and suites
− As a contributor, you will want to familiarize yourself 

with this directory! :)
/drizzled

− ALL kernel code
− Optimizer, parser, runtime, plugin APIs



  

/drizzled directory

/drizzled/memory
− Legacy memory allocation
− Will be a day of days when it is removed

/drizzled/internal
− MySQL portability/system library
− Many things removed from original MySQL mysys 

library
− You should take care when using any function in here

 Check for a standard library prototype first!



  

/drizzled (kernel code)

/drizzled/atomic
− Portable C++ atomic<> implementation

/drizzled/message
− Google Protobuffer proto definitions

/drizzled/utf8
− C++ UTF8 thin library

/drizzled/util
− Bits and pieces of utility code



  

/drizzled (cont'd)

/drizzled/plugin
− Plugin base interface class definitions

/drizzled/item
− Item derived classes

/drizzled/field
− Field storage classes

/drizzled/function
− Built-in SQL functions



  

/drizzled (cont'd)

/drizzled/optimizer
− Most optimizer code, range operations, aggregation

/drizzled/statement
− SQL Statement classes
− e.g. statement::Insert

/drizzled/algorithm
− crc32, sha1, etc..



  

/plugin (module code)

Lots of plugin examples and default 
implementations
− Authentication
− Data Dictionaries (TableFunction)
− Replicators
− Transaction log
− Logging
− Session scheduling
− Pluggable functions
− Storage engines



  

libdrizzle

BSD licensed, written in pure C by Eric Day
Client/server communication protocol
Clean, stack-based approach

− http://launchpad.net/libdrizzle
Requirement for developing Drizzle:

bzr branch lp:libdrizzle libdrizzle

cd libdrizzle; ./config/autorun.sh; ./configure

make && make check

sudo make install



  

Easy First Steps

Where to start?



  

don't dig too deep!

 It's best to start with small, attainable goals
 Very easy to go down “ratholes” in the code
 Have clear, well-defined tasks
 Stay out of the optimizer until you've coded on 

Drizzle for >3 months ;)
 Lots of little tasks that make it easy to get your 

feet wet and feel like you've gotten stuff 
accomplished

− See low-hanging-fruit milestone



  

get your feet wet

 Refactoring and code cleanup
− Replacing custom code with STL or libc
− Cleaning up style and indentation problems

 Documenting the large parts of the source code 
which are undocumented

− Great way to learn the source code without altering
 Creating test cases

− Look at where the source code is weak on test 
coverage: http://drizzle.org/lcov/

− Work on creating tests to cover missing spots or 
remove dead code



  

lcov



  

coverage of a source code file



  

Overview of Drizzle's
Architecture



  

drizzle's system architecture

“Microkernel” design means most features are 
built as plugins
− Authentication, replication, logging, information 

schema, storage engine, etc
− The kernel is really just the parser, optimizer, and 

runtime
We are C++, not C+
We use open source libraries as much as 
possible

− STL, gettext, Boost, pcre, GPB, etc
− Don't reinvent the wheel



  

drizzle's system architecture

No single “right way” of implementing 
something
− Your solution may be great for your environment, but 

not good for others
− And that's fine – it's what the plugin system is all 

about
We focus on the APIs so you can focus on the 
implementation

Drizzle is just one part of a large ecosystem
− Web servers, caching layers, authentication systems
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ignore the kernel

You should be able to ignore the kernel as a 
“black box”

Plugin developers should focus on their plugin 
or module and not change anything in the 
kernel

 If you need to meddle with or change something 
in the kernel, it is a sign of a bad interface
− And you should file a bug! :)



  

Under the Hood

Kernel Code Walk-through



  

Drizzle kernel

Written in C++
− Not C, Not C+

Responsible for the “runtime” and coordinating 
communication between various plugins, 
clients, and itself

Big parts:
− Session handling
− SQL statement parsing and optimization
− Execution of parsed statements
− Registering and communicating with plugins



  

The Session

Session != OS Thread
Represents the series of SQL commands 
received from a client

Defined in /drizzled/session.h
Contains its own separate memory area, called 
a mem_root, for memory allocated that lives 
for the lifetime of the Session object



  

client
sends

request
while(client= plugin::Listen::getClient())

session->authenticate()

session->prepareForQueries()

session->executeStatement()

session->disconnect()

These last two steps are 
repeated while the Session 

continues to have work to do

This step calls any 
authenticator plugins that have 
been registered with the kernel

see /drizzled/main.cc



  

main client-listening loop
/drizzled/main.cc



  

scheduling a session
/drizzled/session.cc

/plugin/multi_thread/multi_thread.cc



  

running a session
/plugin/multi_thread/multi_thread.h

/drizzled/session.cc



  

Session::executeStatement()

Lots 'o stuff happening
Depends on the command received from the 
client

Eventually, the dispatch_command() function is 
reached, which dispatches the execution to the 
drizzled::statement::Statement subclass created in 
the parser
− Command is an integer SQLCOM_XXX
− See /drizzled/sql_parse.cc

The actual drizzled::statement::Statement subclass 
has its execute() method called



  

Session::executeStatement()
/drizzled/session.cc



  

dispatch_command()
/drizzled/sql_parse.cc



  

Parsing of a statement

 COM_QUERY commands have a corresponding string 
of SQL text passed to the mysql_parse() method

This string must be parsed
Grammar stored in a Yacc file

− see /drizzled/sql_yacc.yy
 DRIZZLEparse() and DRIZZLElex() are the two 
functions which handle parsing
− see /drizzled/sql_parse.cc
− see /drizzled/sql_lex.cc



  

mysql_parse()
/drizzled/sql_parse.cc



  

Parsing (cont'd)

The parsing process actually does a lot more 
than just lex and parse the statement's SQL 
string
− This is unfortunate, because it makes 
modifying and modularizing the parser difficult

− Work is underway to address this
The parsing process allocates a series of Item 
class objects, and constructs a LEX object which 
represents the parsed statement

The LEX is not an abstract syntax tree, nor is it a 
compiled execution plan



  

Parsing (cont'd)

After the LEX is constructed, it may go through 
some post-processing (particularly in the case 
of a SELECT statement)

The LEX is eventually tacked onto the Session so 
that routines processing the statement can 
refer to its parsed structure
− see /drizzled/sql_lex.h
− see /drizzled/sql_lex.cc

After this point, the type of command being 
executed determines what happens next...



  

mysql_execute_command()
/drizzled/sql_parse.cc

OK, so that's not the whole function, but it's the 
important part of it

Want an easy starter task?  Get rid of 
mysql_execute_command() and put all of the code in it 
into mysql_parse() and then rename mysql_parse() to 
drizzled::parseStatement()



  

statement::Select::execute()
/drizzled/statement/select.cc

This is one of the statement subclasses which 
does not do much

Other statement subclass' execute() methods do 
much more -- for instance 
statement::AlterTable::execute()



  

execute_sqlcom_select()
/drizzled/sql_parse.cc



  

Session::openTablesLock()

Should really be called something more 
descriptive

 It doesn't "lock" the tables used in the query 
necessarily

 It "advises" the underlying engine(s) of the 
query's intent
− Does the query intend to modify rows?
− Does the query intend to write rows?

A thin wrapper around the eventual call to 
mysql_lock_tables()



  

mysql_lock_tables()
/drizzled/lock.cc (heavily abbreviated)



  

handle_select()
/drizzled/sql_select.cc



  

mysql_select()
/drizzled/sql_select.cc (heavily edited)



  

Optimization of SELECT statements

 During execution of SELECT statements, the 
optimizer “module” is called

− It's not really a module, more of a loose collection of 
classes and functions in /drizzled/optimizer/

− See /drizzled/sql_select.cc
− See /drizzled/join.cc
− See /drizzled/optimizer/range.cc

 The Join class is the dominant class used in the 
optimizer's routines



  

Optimization (cont'd)

 It may not be obvious by looking at the code, 
but the Join class' responsibility is to query the 
storage engine (plugin::StorageEngine and 
drizzled::Cursor) and determine how best to 
perform the nested loops join algorithm

 In other words, determine the best access plan 
to the data in the storage engine

− choose_plan():/drizzled/join.cc
− best_access_path():/drizzled/join.cc
− Join::prepare() (224 LOC)
− Join::optimize() (685 LOC!)



  

Execution

 Nested loops join algorithm
 Implemented using the READ_RECORD struct and a 

set of routines in /drizzled/sql_select.cc 
− join_read_system()
− join_read_const()
− join_read_key(), etc...

 Think of READ_RECORD as a rudimentary cursor over 
the storage engine's raw records

 READ_RECORD has a variable read_record of type 
pointer to function, which controls reading

− See /drizzled/records.cc



  

join_read_first() & join_read_next()

/drizzled/sql_select.cc (abbreviated)



  

Packaging results

 The select_send class is used to "package" up rows 
as they are sent to a client

 Each field in the resultset of data is bound to an 
Item instance

 select_send::send_data() sends a single row of data 
back to a client



  

select_send::send_data()

/drizzled/select_send.h



  

Walkthrough of Drizzle
Plugin Basics



  

plugin/module development basics

A working C++ development environment
− http://www.joinfu.com/2008/08/getting-a-working-c-c-plusplus-

development-environment-for-developing-drizzle/

A module in Drizzle is a set of source files in 
/plugin/ that implements some functionality
− For instance /plugin/transaction_log/* contains all 

files for the Transaction Log module
Each module must have a plugin.ini file

− The fabulous work by Monty Taylor on the Pandora 
build system automates most work for you



  

plugin/module development basics

A module contains one or more 
implementations of a plugin class

A plugin class is any class interface declared 
in /drizzled/plugin/
− For instance, the header file 
/drizzled/plugin/transaction_applier.h declares the 
interface for the plugin::TransactionApplier API

− The header files contain documentation for the 
plugin interfaces

− You can also see documentation on the drizzle.org 
website: http://drizzle.org/doxygen/



  

the plugin.ini

A description file for the plugin
Read during compilation and Pandora build 
system creates appropriate linkage for you

Required fields:
− headers= <list of all header files in module>
− sources= <list of all source files in module>
− title= <name of the module/plugin>
− description= <decription for the module>



  

 from plugin.ini to data dictionary

[plugin]
title=Filtered Replicator
author=Padraig O Sullivan
version=0.2
license=PLUGIN_LICENSE_GPL
description=
  A simple filtered replicator which allows a user to filter out events based on a schema or 
table name
load_by_default=yes
sources=filtered_replicator.cc
headers=filtered_replicator.h

drizzle> SELECT * FROM DATA_DICTIONARY.MODULES
    -> WHERE MODULE_NAME LIKE 'FILTERED%'\G
*************************** 1. row ***************************
       MODULE_NAME: filtered_replicator
    MODULE_VERSION: 0.2
     MODULE_AUTHOR: Padraig O'Sullivan
        IS_BUILTIN: FALSE
    MODULE_LIBRARY: filtered_replicator
MODULE_DESCRIPTION: Filtered Replicator
    MODULE_LICENSE: GPL

drizzle> SELECT * FROM DATA_DICTIONARY.PLUGINS
    -> WHERE PLUGIN_NAME LIKE 'FILTERED%'\G
*************************** 1. row ***************************
PLUGIN_NAME: filtered_replicator
PLUGIN_TYPE: TransactionReplicator
  IS_ACTIVE: TRUE
MODULE_NAME: filtered_replicator



  

module initialization

 Recommend placing module-level variables and 
routines in /plugin/$module/module.cc

 Required: an initialization function taking a 
reference to the plugin::Context object for your 
module as its only parameter

− Typically named init()
 Optional: module-level system variables
 Required: DECLARE_PLUGIN($init, $vars) macro 

inside above source file



  

module initialization example

static DefaultReplicator *default_replicator= NULL; /* The singleton replicator */

static int init(plugin::Context &context)
{
  default_replicator= new DefaultReplicator("default_replicator");
  context.add(default_replicator);
  return 0;
}

DRIZZLE_PLUGIN(init,  NULL);



  

what are plugin hooks?

 Places in the source code that notify plugins 
about certain events are called plugin hooks

 During the course of a query's execution, many 
plugin hooks can be called

 The subclass of plugin::Plugin determines on 
which events a plugin is notified and what gets 
passed as a state parameter to the plugin during 
notification

 These plugin hooks define the plugin's API



  

Example: plugin::Authentication

class Authentication : public Plugin
{
public:
  explicit Authentication(std::string name_arg)
    : Plugin(name_arg, "Authentication")
  {}
  virtual ~Authentication() {}

  virtual bool authenticate(const SecurityContext &sctx,
                            const std::string &passwd)= 0;

  static bool isAuthenticated(const SecurityContext &sctx,
                              const std::string &password);
};

 authenticate() is the pure virtual method that an 
implementing class should complete

 isAuthenticated() is the plugin hook that is called 
by the kernel to determine authorization



  

example plugin hook

class AuthenticateBy : public unary_function<plugin::Authentication *, bool>
{
...
  inline result_type operator()(argument_type auth)
  {
    return auth->authenticate(sctx, password);
  }
};

bool plugin::Authentication::isAuthenticated(const SecurityContext &sctx,
                                             const string &password)
{
...
  /* Use find_if instead of foreach so that we can collect return codes */
  vector<plugin::Authentication *>::iterator iter=
    find_if(all_authentication.begin(), all_authentication.end(),
            AuthenticateBy(sctx, password));
...
  if (iter == all_authentication.end())
  {
    my_error(ER_ACCESS_DENIED_ERROR, MYF(0),
             sctx.getUser().c_str(),
             sctx.getIp().c_str(),
             password.empty() ? ER(ER_NO) : ER(ER_YES));
    return false;
  }
  return true;
}



  

testing your plugin

 No plugin should be without corresponding test 
cases

 Luckily, again because of the work of Monty 
Taylor, your plugin can easily hook into the 
Drizzle testing system

 Create a tests/ directory in your plugin's 
directory, containing a t/ and an r/ subdirectory 
(for “test” and “result”)



  

creating test cases

 Your plugin will most likely not be set to load by 
default

 To activate your plugin, you need to start the 
server during your tests with:

 --plugin-add=$module

 To automatically have the server started with 
command-line options by the Drizzle test suite, 
create a file called $testname-master.opt and place 
it along with your test case in your /plugin/
$module/tests/t/ directory



  

running your test cases

 Simply run the test-run.pl script with your suite:
jpipes@serialcoder:~/repos/drizzle/trunk$ cd tests/
jpipes@serialcoder:~/repos/drizzle/trunk/tests$ ./test-run --suite=transaction_log
Drizzle Version 2010.04.1439
...
================================================================================
DEFAULT STORAGE ENGINE: innodb
TEST                                                         RESULT    TIME (ms)
--------------------------------------------------------------------------------

transaction_log.alter                                        [ pass ]    1025
transaction_log.auto_commit                                  [ pass ]     650
transaction_log.blob                                         [ pass ]     661
transaction_log.create_select                                [ pass ]     688
transaction_log.create_table                                 [ pass ]     413
transaction_log.delete                                       [ pass ]    1744
transaction_log.filtered_replicator                          [ pass ]    6132
...
transaction_log.schema                                       [ pass ]     137
transaction_log.select_for_update                            [ pass ]    6496
transaction_log.slap                                         [ pass ]   42522
transaction_log.sync_method_every_write                      [ pass ]      23
transaction_log.temp_tables                                  [ pass ]     549
transaction_log.truncate                                     [ pass ]     441
transaction_log.truncate_log                                 [ pass ]     390
transaction_log.udf_print_transaction_message                [ pass ]     408
transaction_log.update                                       [ pass ]    1916
--------------------------------------------------------------------------------
Stopping All Servers
All 28 tests were successful.
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