

The Drizzle Contributor Tutorial

Jay Pipes
jaypipes@gmail.com

http://joinfu.com

These slides released under the Creative Commons Attribution­Noncommercial­Share Alike 3.0 License

what we'll cover today

Being a Drizzle contributor
The Drizzle source code
Walk-through of a SELECT statement
Plugin development tutorial

Being a Drizzle Contributor

being a Drizzle contributor

About the Drizzle community
 IRC and the mailing lists
Using Launchpad
Using Bazaar

some things to remember...

No blame
No shame
Be open and transparent
Learn something from someone? Pass it on!

− By adding to the wiki (http://drizzle.org/wiki/)
− By sharing it with another contributor
− By blogging about it
− By posting what you learn to the mailing list

There is no such thing as a silly question

IRC and the mailing list

 IRC is often best way to get in touch
− irc.freenode.net #drizzle

Mailing list for longer discussions
− Signup here: http://launchpad.net/~drizzle-discuss
− Archive: https://lists.launchpad.net/drizzle-discuss/

NO TROLLS.

about launchpad

● Written by the folks at Canonical/Ubuntu
● Online platform for project and code

management
● Features

– Source control services
– Translation services
– Bug tracking
– Task management
– Answers/FAQ functionality

your launchpad home page

https://launchpad.net/~jaypipes

● Profile
● Location
● SSH public keys
● Team memberships
● Most active

projects
● Karma

projects on launchpad

● Each project
has a home
page, shown
to the right

● Main project
team is listed
as the
“driver”

https://code.launchpad.net/drizzle

project teams on launchpad

https://launchpad.net/~drizzle-developers

● To join the
team, click
the team
link, then
“Join this
team”

project downloads

https://edge.launchpad.net/mysql-sandbox/+download

code management on launchpad

https://code.launchpad.net/drizzle

bug tracking on launchpad

https://bugs.launchpad.net/drizzle

https://bugs.launchpad.net/drizzle/+bug/271075

answers on launchpad

https://answers.launchpad.net/drizzle

https://answers.edge.launchpad.net/drizzle/+question/44565

translations on launchpad

https://translations.launchpad.net/drizzle/trunk/+pots/drizzle

task management on launchpad

https://blueprints.launchpad.net/drizzle

about bazaar

● Written in C and Python
– C modules for networking and I/O layers
– Python for everything else

● Maintained by a small group of developers with
community-driven roadmap

● Bazaar is released every ~4 weeks

installing bazaar on linux

● Ubuntu/Debian

$> sudo apt-get install bzr bzrtools meld
● Red Hat

$> su -c 'rpm -Uvh
http://download.fedora.redhat.com/pub/epel/5/i3
86/epel-release-5-2.noarch.rpm'

$> su -c 'yum install bzr'
● Bazaar Tools

– GUI tools and useful plugins
● Meld is a graphical source conflict resolver

installing bazaar on windows and mac osx

● Windows:
– Grab the installer from:

http://bazaar-vcs.org/Download

– Run it. :)
● Mac OSX

– Either grab an image from:
http://bazaar-vcs.org/Download

– Or use MacPorts
$> sudo port install bzr bzrtools meld

http://bazaar-vcs.org/Download
http://bazaar-vcs.org/Download

distributed source control concepts

● A repository is a collection of branches
– But...there is no central server with single

controlling repository
● Instead, developers work on their own branches

of a project's code
● Code is maintained for a project by merging

branches together
● The project's source tree is merely the

collection of branches that contain source code

decentralized model with gatekeeper

1 Developer creates a local branch from some branch of
the project

2 Developer makes changes to the local branch

3 Developer commits changes to the local branch

4 Developer pushes a changeset to another branch

5 Gatekeeper (or merge captain) reviews the pushed
changeset

6 Gatekeeper merges changes into a branch which serves
as a “trunk” or active development branch

7 Developer pulls from trunk branch to update locally

decentralized model with gatekeeper

1 $> bzr branch lp:drizzle trunk

2 $> vi somefile.cc

3 $> bzr commit somefile.cc -m “code change comment”

4 $> bzr push lp:~username/drizzle/reviews

5 $> bzr branch lp:~username/drizzle/reviews username-reviews

6 $> cd local-trunk && bzr merge ../username-reviews && bzr push

7 $> cd trunk; bzr pull

setting up a local development repository

$> mkdir ~/repos

$> cd repos; bzr init-repo drizzle

$> cd drizzle

$> bzr branch lp:drizzle trunk
● To pull in any changesets merged into the trunk

branch, do this on a periodic basis:

$> cd ~/repos/drizzle/trunk; bzr pull
● Consider scripting the pull in cron

working on a bug locally

$> bzr branch trunk bug32124-crash-ps-var

$> cd bug32124-crash-ps-var
● Make code changes

$> bzr commit filename.cc # Repeat as needed
● Enter descriptive comments about the change in

your editor and save

$> bzr push lp:~username/drizzle/reviews

proposing a branch for review

● In Launchpad.net, click “Propose for merging into another
branch” as shown in the screenshot below:

https://code.launchpad.net/~drizzle-developers/drizzle/enable-tests

best practices for using launchpad and bazaar

● Use small, manageable “work units”
– GOOD: “split and enable func_md5 plugin tests”
– BAD: “refactor the server” :)

● Use the Blueprints system to relate common and
dependent tasks
– Very helpful in organizing larger blueprints with

smaller, more specific subtasks
● Have a personal “reviews” branch

– Good for small patch reviews for your own code
● Have specific branches for larger tasks

small work units

● A blueprint should be small and as descriptive as
possible

● Blueprints can be created to group smaller tasks
into a common “super-task”

● Use the “Add dependency” action to link a
subtask to a super-task

● The super-task will show a graphical
representation of the dependencies

a task with subtasks

https://blueprints.launchpad.net/drizzle/+spec/fix-and-enable-tests

using milestones to provide direction

● A milestone is simply a container which acts as a
“target” for developers

● You can link bugs, blueprints, and branches to a
milestone

● Multiple milestones can exist simultaneously for
a project

a milestone

https://blueprints.launchpad.net/drizzle/+milestone/cirrus

closing a launchpad bug through bazaar

● Extremely useful option to the bzr commit
command

● Allows you to automatically relate a bug to a
specific commit in the source tree

● Automatically changes the bug status to fix
committed

$> bzr commit --fixes=lp:XXXXXX
● Where XXXXXX is the bug ID from Launchpad
● Also prefixes for other bug trackers (see bzr

manual)

merging and resolving conflicts

● Use bzr merge to merge one branch's changes
into another

● A merge conflict occurs when source files
cannot be cleanly merged together
– Typically when two developers have edited the same

lines of the same source file
● Conflicting files will have file.OTHER, file.THIS,

and file.BASE in the source directory
● Resolve the conflicts using Meld

merging one branch into another branch

● To merge, go to the target branch and specify
the source directory:

$> cd ~/repos/drizzle/enable-tests

$> bzr merge ../trunk
● This would merge trunk's changes into the

enable-tests branch
● Conflicts listed at end of merge output:

Text conflict in tests/t/func_gconcat.test
Text conflict in tests/t/func_str.test
2 conflicts encountered.

using bzr gconflicts

● Conflicts can always be listed with bzr conflicts:
[510][jpipes@serialcoder: /home/jpipes/repos/drizzle/enable-tests]$ bzr conflicts
Text conflict in tests/t/func_gconcat.test
Text conflict in tests/t/func_str.test

● Use Meld to resolve a
conflict

$> bzr gconflicts
● This will list all files with

conflicts
● Choose a file to resolve

and select “meld” from the
dropdown of utilities

using meld to resolve a conflict

using meld for visual diffs

● Ctrl-D to jump to the next conflict (Ctrl-E goes back
one conflict)

● The left-most file is the BASE file, the middle file is the
local file and the right-most file is the one from the
merged branch

● Decide how to resolve the conflict and edit the middle
file (filename.THIS)

● Changes can be applied by editing the files directly or
by clicking the small arrows in the gray area in
between the files

● Ctrl-S to save the changes

resolving the conflict in bzr

● Tell bzr that you've resolved things
● Then commit

[518][jpipes@serialcoder: enable-tests]$ bzr resolve --all
[525][jpipes@serialcoder: enable-tests]$ bzr commit -m \
"Merge from trunk and resolved conflicts func_gconcat and func_str - simple removal of ZEROFILL args"

resources

● Bazaar online manual and user guide
http://doc.bazaar-vcs.org/bzr.dev/en/user-reference/bzr_man.html

http://doc.bazaar-vcs.org/bzr.dev/en/user-guide/index.html

● Launchpad user's wiki
https://help.launchpad.net/

● IRC on Freenode #launchpad and #bzr

the one slide on licensing

 I hate talking about licensing
− Everybody has a different opinion...

But here's what matters to you:
− If you contribute code inside the /drizzled directory,

that code is contributed under the GPL since the
kernel is derived from MySQL

− If you contribute a plugin implementation or module,
you can contribute that code under a license of your
choice

Feel free to get into lots of debate and
arguments about licensing
− Just not with me

A Word About Style

Consistent Rules for Coding

Code Style Rules

Yes, these are enforced in code review... :)
Consistency is the key
Nobody agrees with all of the style, but
everyone should follow it

Otherwise the code is very difficult to navigate
No TABs
TABs should be expanded as spaces
2 space indentation
Use Vim? Check out my vimrc on joinfu.com

Class Names

Pascal casing, no underscores
 Inconsistent in code...cleanup underway
CORRECT:

class MyClassName;
 INCORRECT:

class My_Class_Name;
 INCORRECT:

class MY_CLASS_NAME;

Class Method Names

Camel casing, no underscores
 Inconsistent in code...cleanup underway
CORRECT:

int getSomeValue();
 INCORRECT:

int get_some_value();
 INCORRECT:

int GetSomeValue();

Class Design

Keep class member variable private unless
there is a good reason not to
− And there really isn't any good reason

Write public accessors and setters for these
member variables

General rules of class design:
− Only expose the classes' API
− Only expose what is necessary to expose
− RAII

 Use constructors and destructors properly
 Objects should own their own memory

Assignment

Zero spaces before assignment operator
One and only one space afterwards
CORRECT:

uint32_t my_counter= 0;
 INCORRECT:

uint32_t my_counter = 0;
 INCORRECT:

uint32_t my_counter= 0;

Comparison

One and only one space before and after
comparison operator

CORRECT:

if (my_counter == 1)
 INCORRECT:

if (my_counter==1)
 INCORRECT:

if (my_counter== 1)

Braces

Braces should be on their own line
else should be on its own line
CORRECT:
if (my_counter == 1)
{
 // do something
}
 INCORRECT:
if (my_counter == 1) {
 // do something
}

Braces (cont'd)

Classes and namespaces follow same standard
Same with switch!
CORRECT:
class MyClass :public SomeOtherClass
{
private:
 int my_counter;
};
 INCORRECT:
class MyClass :public SomeOtherClass {
 private:
 int my_counter;
};

If in doubt...

Check the Wiki:

http://drizzle.org/wiki/Coding_Standards

Inside the Code

Overview of the Drizzle Code Base

directory organization

/client
− Client programs (drizzle.cc, drizzledump.cc etc)

/config
− Scripts such as autorun.sh for the build process

/extra
− Contains my_print_defaults.cc
− Will be going away this summer (yeah! \o/)

/gnulib
− Portability headers

directory organization (cont'd)

/support-files
− Various utility scripts

/tests
− Unit and functional test cases and suites
− As a contributor, you will want to familiarize yourself

with this directory! :)
/drizzled

− ALL kernel code
− Optimizer, parser, runtime, plugin APIs

/drizzled directory

/drizzled/memory
− Legacy memory allocation
− Will be a day of days when it is removed

/drizzled/internal
− MySQL portability/system library
− Many things removed from original MySQL mysys

library
− You should take care when using any function in here

 Check for a standard library prototype first!

/drizzled (kernel code)

/drizzled/atomic
− Portable C++ atomic<> implementation

/drizzled/message
− Google Protobuffer proto definitions

/drizzled/utf8
− C++ UTF8 thin library

/drizzled/util
− Bits and pieces of utility code

/drizzled (cont'd)

/drizzled/plugin
− Plugin base interface class definitions

/drizzled/item
− Item derived classes

/drizzled/field
− Field storage classes

/drizzled/function
− Built-in SQL functions

/drizzled (cont'd)

/drizzled/optimizer
− Most optimizer code, range operations, aggregation

/drizzled/statement
− SQL Statement classes
− e.g. statement::Insert

/drizzled/algorithm
− crc32, sha1, etc..

/plugin (module code)

Lots of plugin examples and default
implementations
− Authentication
− Data Dictionaries (TableFunction)
− Replicators
− Transaction log
− Logging
− Session scheduling
− Pluggable functions
− Storage engines

libdrizzle

BSD licensed, written in pure C by Eric Day
Client/server communication protocol
Clean, stack-based approach

− http://launchpad.net/libdrizzle
Requirement for developing Drizzle:

bzr branch lp:libdrizzle libdrizzle

cd libdrizzle; ./config/autorun.sh; ./configure

make && make check

sudo make install

Easy First Steps

Where to start?

don't dig too deep!

 It's best to start with small, attainable goals
 Very easy to go down “ratholes” in the code
 Have clear, well-defined tasks
 Stay out of the optimizer until you've coded on

Drizzle for >3 months ;)
 Lots of little tasks that make it easy to get your

feet wet and feel like you've gotten stuff
accomplished

− See low-hanging-fruit milestone

get your feet wet

 Refactoring and code cleanup
− Replacing custom code with STL or libc
− Cleaning up style and indentation problems

 Documenting the large parts of the source code
which are undocumented

− Great way to learn the source code without altering
 Creating test cases

− Look at where the source code is weak on test
coverage: http://drizzle.org/lcov/

− Work on creating tests to cover missing spots or
remove dead code

lcov

coverage of a source code file

Overview of Drizzle's
Architecture

drizzle's system architecture

“Microkernel” design means most features are
built as plugins
− Authentication, replication, logging, information

schema, storage engine, etc
− The kernel is really just the parser, optimizer, and

runtime
We are C++, not C+
We use open source libraries as much as
possible

− STL, gettext, Boost, pcre, GPB, etc
− Don't reinvent the wheel

drizzle's system architecture

No single “right way” of implementing
something
− Your solution may be great for your environment, but

not good for others
− And that's fine – it's what the plugin system is all

about
We focus on the APIs so you can focus on the
implementation

Drizzle is just one part of a large ecosystem
− Web servers, caching layers, authentication systems

Clients

Parser

Optimizer

Listener
Plugin

(Protocol)

Pluggable Storage Engine API

MyISAM InnoDB MEMORY Archive PBXT

Executor

Authentication
Plugin

Query Cache
Plugin

Logging
Plugin
(Pre)

Logging
Plugin
(Post)

Replication
PluginsReplication

Services

Transaction
Services

Scheduler
Plugin

ke
rn

el

Authorization
Plugin

User-Defined
Function
Plugins

Dictionary
Plugin

Plugin
Registration

Metadata
Services

ignore the kernel

You should be able to ignore the kernel as a
“black box”

Plugin developers should focus on their plugin
or module and not change anything in the
kernel

 If you need to meddle with or change something
in the kernel, it is a sign of a bad interface
− And you should file a bug! :)

Under the Hood

Kernel Code Walk-through

Drizzle kernel

Written in C++
− Not C, Not C+

Responsible for the “runtime” and coordinating
communication between various plugins,
clients, and itself

Big parts:
− Session handling
− SQL statement parsing and optimization
− Execution of parsed statements
− Registering and communicating with plugins

The Session

Session != OS Thread
Represents the series of SQL commands
received from a client

Defined in /drizzled/session.h
Contains its own separate memory area, called
a mem_root, for memory allocated that lives
for the lifetime of the Session object

client
sends

request
while(client= plugin::Listen::getClient())

session->authenticate()

session->prepareForQueries()

session->executeStatement()

session->disconnect()

These last two steps are
repeated while the Session

continues to have work to do

This step calls any
authenticator plugins that have
been registered with the kernel

see /drizzled/main.cc

main client-listening loop
/drizzled/main.cc

scheduling a session
/drizzled/session.cc

/plugin/multi_thread/multi_thread.cc

running a session
/plugin/multi_thread/multi_thread.h

/drizzled/session.cc

Session::executeStatement()

Lots 'o stuff happening
Depends on the command received from the
client

Eventually, the dispatch_command() function is
reached, which dispatches the execution to the
drizzled::statement::Statement subclass created in
the parser
− Command is an integer SQLCOM_XXX
− See /drizzled/sql_parse.cc

The actual drizzled::statement::Statement subclass
has its execute() method called

Session::executeStatement()
/drizzled/session.cc

dispatch_command()
/drizzled/sql_parse.cc

Parsing of a statement

 COM_QUERY commands have a corresponding string
of SQL text passed to the mysql_parse() method

This string must be parsed
Grammar stored in a Yacc file

− see /drizzled/sql_yacc.yy
 DRIZZLEparse() and DRIZZLElex() are the two
functions which handle parsing
− see /drizzled/sql_parse.cc
− see /drizzled/sql_lex.cc

mysql_parse()
/drizzled/sql_parse.cc

Parsing (cont'd)

The parsing process actually does a lot more
than just lex and parse the statement's SQL
string
− This is unfortunate, because it makes
modifying and modularizing the parser difficult

− Work is underway to address this
The parsing process allocates a series of Item
class objects, and constructs a LEX object which
represents the parsed statement

The LEX is not an abstract syntax tree, nor is it a
compiled execution plan

Parsing (cont'd)

After the LEX is constructed, it may go through
some post-processing (particularly in the case
of a SELECT statement)

The LEX is eventually tacked onto the Session so
that routines processing the statement can
refer to its parsed structure
− see /drizzled/sql_lex.h
− see /drizzled/sql_lex.cc

After this point, the type of command being
executed determines what happens next...

mysql_execute_command()
/drizzled/sql_parse.cc

OK, so that's not the whole function, but it's the
important part of it

Want an easy starter task? Get rid of
mysql_execute_command() and put all of the code in it
into mysql_parse() and then rename mysql_parse() to
drizzled::parseStatement()

statement::Select::execute()
/drizzled/statement/select.cc

This is one of the statement subclasses which
does not do much

Other statement subclass' execute() methods do
much more -- for instance
statement::AlterTable::execute()

execute_sqlcom_select()
/drizzled/sql_parse.cc

Session::openTablesLock()

Should really be called something more
descriptive

 It doesn't "lock" the tables used in the query
necessarily

 It "advises" the underlying engine(s) of the
query's intent
− Does the query intend to modify rows?
− Does the query intend to write rows?

A thin wrapper around the eventual call to
mysql_lock_tables()

mysql_lock_tables()
/drizzled/lock.cc (heavily abbreviated)

handle_select()
/drizzled/sql_select.cc

mysql_select()
/drizzled/sql_select.cc (heavily edited)

Optimization of SELECT statements

 During execution of SELECT statements, the
optimizer “module” is called

− It's not really a module, more of a loose collection of
classes and functions in /drizzled/optimizer/

− See /drizzled/sql_select.cc
− See /drizzled/join.cc
− See /drizzled/optimizer/range.cc

 The Join class is the dominant class used in the
optimizer's routines

Optimization (cont'd)

 It may not be obvious by looking at the code,
but the Join class' responsibility is to query the
storage engine (plugin::StorageEngine and
drizzled::Cursor) and determine how best to
perform the nested loops join algorithm

 In other words, determine the best access plan
to the data in the storage engine

− choose_plan():/drizzled/join.cc
− best_access_path():/drizzled/join.cc
− Join::prepare() (224 LOC)
− Join::optimize() (685 LOC!)

Execution

 Nested loops join algorithm
 Implemented using the READ_RECORD struct and a

set of routines in /drizzled/sql_select.cc
− join_read_system()
− join_read_const()
− join_read_key(), etc...

 Think of READ_RECORD as a rudimentary cursor over
the storage engine's raw records

 READ_RECORD has a variable read_record of type
pointer to function, which controls reading

− See /drizzled/records.cc

join_read_first() & join_read_next()

/drizzled/sql_select.cc (abbreviated)

Packaging results

 The select_send class is used to "package" up rows
as they are sent to a client

 Each field in the resultset of data is bound to an
Item instance

 select_send::send_data() sends a single row of data
back to a client

select_send::send_data()

/drizzled/select_send.h

Walkthrough of Drizzle
Plugin Basics

plugin/module development basics

A working C++ development environment
− http://www.joinfu.com/2008/08/getting-a-working-c-c-plusplus-

development-environment-for-developing-drizzle/

A module in Drizzle is a set of source files in
/plugin/ that implements some functionality
− For instance /plugin/transaction_log/* contains all

files for the Transaction Log module
Each module must have a plugin.ini file

− The fabulous work by Monty Taylor on the Pandora
build system automates most work for you

plugin/module development basics

A module contains one or more
implementations of a plugin class

A plugin class is any class interface declared
in /drizzled/plugin/
− For instance, the header file
/drizzled/plugin/transaction_applier.h declares the
interface for the plugin::TransactionApplier API

− The header files contain documentation for the
plugin interfaces

− You can also see documentation on the drizzle.org
website: http://drizzle.org/doxygen/

the plugin.ini

A description file for the plugin
Read during compilation and Pandora build
system creates appropriate linkage for you

Required fields:
− headers= <list of all header files in module>
− sources= <list of all source files in module>
− title= <name of the module/plugin>
− description= <decription for the module>

 from plugin.ini to data dictionary

[plugin]
title=Filtered Replicator
author=Padraig O Sullivan
version=0.2
license=PLUGIN_LICENSE_GPL
description=
 A simple filtered replicator which allows a user to filter out events based on a schema or
table name
load_by_default=yes
sources=filtered_replicator.cc
headers=filtered_replicator.h

drizzle> SELECT * FROM DATA_DICTIONARY.MODULES
 -> WHERE MODULE_NAME LIKE 'FILTERED%'\G
*************************** 1. row ***************************
 MODULE_NAME: filtered_replicator
 MODULE_VERSION: 0.2
 MODULE_AUTHOR: Padraig O'Sullivan
 IS_BUILTIN: FALSE
 MODULE_LIBRARY: filtered_replicator
MODULE_DESCRIPTION: Filtered Replicator
 MODULE_LICENSE: GPL

drizzle> SELECT * FROM DATA_DICTIONARY.PLUGINS
 -> WHERE PLUGIN_NAME LIKE 'FILTERED%'\G
*************************** 1. row ***************************
PLUGIN_NAME: filtered_replicator
PLUGIN_TYPE: TransactionReplicator
 IS_ACTIVE: TRUE
MODULE_NAME: filtered_replicator

module initialization

 Recommend placing module-level variables and
routines in /plugin/$module/module.cc

 Required: an initialization function taking a
reference to the plugin::Context object for your
module as its only parameter

− Typically named init()
 Optional: module-level system variables
 Required: DECLARE_PLUGIN($init, $vars) macro

inside above source file

module initialization example

static DefaultReplicator *default_replicator= NULL; /* The singleton replicator */

static int init(plugin::Context &context)
{
 default_replicator= new DefaultReplicator("default_replicator");
 context.add(default_replicator);
 return 0;
}

DRIZZLE_PLUGIN(init, NULL);

what are plugin hooks?

 Places in the source code that notify plugins
about certain events are called plugin hooks

 During the course of a query's execution, many
plugin hooks can be called

 The subclass of plugin::Plugin determines on
which events a plugin is notified and what gets
passed as a state parameter to the plugin during
notification

 These plugin hooks define the plugin's API

Example: plugin::Authentication

class Authentication : public Plugin
{
public:
 explicit Authentication(std::string name_arg)
 : Plugin(name_arg, "Authentication")
 {}
 virtual ~Authentication() {}

 virtual bool authenticate(const SecurityContext &sctx,
 const std::string &passwd)= 0;

 static bool isAuthenticated(const SecurityContext &sctx,
 const std::string &password);
};

 authenticate() is the pure virtual method that an
implementing class should complete

 isAuthenticated() is the plugin hook that is called
by the kernel to determine authorization

example plugin hook

class AuthenticateBy : public unary_function<plugin::Authentication *, bool>
{
...
 inline result_type operator()(argument_type auth)
 {
 return auth->authenticate(sctx, password);
 }
};

bool plugin::Authentication::isAuthenticated(const SecurityContext &sctx,
 const string &password)
{
...
 /* Use find_if instead of foreach so that we can collect return codes */
 vector<plugin::Authentication *>::iterator iter=
 find_if(all_authentication.begin(), all_authentication.end(),
 AuthenticateBy(sctx, password));
...
 if (iter == all_authentication.end())
 {
 my_error(ER_ACCESS_DENIED_ERROR, MYF(0),
 sctx.getUser().c_str(),
 sctx.getIp().c_str(),
 password.empty() ? ER(ER_NO) : ER(ER_YES));
 return false;
 }
 return true;
}

testing your plugin

 No plugin should be without corresponding test
cases

 Luckily, again because of the work of Monty
Taylor, your plugin can easily hook into the
Drizzle testing system

 Create a tests/ directory in your plugin's
directory, containing a t/ and an r/ subdirectory
(for “test” and “result”)

creating test cases

 Your plugin will most likely not be set to load by
default

 To activate your plugin, you need to start the
server during your tests with:

 --plugin-add=$module

 To automatically have the server started with
command-line options by the Drizzle test suite,
create a file called $testname-master.opt and place
it along with your test case in your /plugin/
$module/tests/t/ directory

running your test cases

 Simply run the test-run.pl script with your suite:
jpipes@serialcoder:~/repos/drizzle/trunk$ cd tests/
jpipes@serialcoder:~/repos/drizzle/trunk/tests$./test-run --suite=transaction_log
Drizzle Version 2010.04.1439
...
==
DEFAULT STORAGE ENGINE: innodb
TEST RESULT TIME (ms)
--

transaction_log.alter [pass] 1025
transaction_log.auto_commit [pass] 650
transaction_log.blob [pass] 661
transaction_log.create_select [pass] 688
transaction_log.create_table [pass] 413
transaction_log.delete [pass] 1744
transaction_log.filtered_replicator [pass] 6132
...
transaction_log.schema [pass] 137
transaction_log.select_for_update [pass] 6496
transaction_log.slap [pass] 42522
transaction_log.sync_method_every_write [pass] 23
transaction_log.temp_tables [pass] 549
transaction_log.truncate [pass] 441
transaction_log.truncate_log [pass] 390
transaction_log.udf_print_transaction_message [pass] 408
transaction_log.update [pass] 1916
--
Stopping All Servers
All 28 tests were successful.

	title
	what we'll cover today
	being a drizzler
	Slide 4
	some things to remember
	Slide 6
	no trolls
	about launchpad
	your launchpad home page
	project home
	project team home
	downloads
	code management
	bugs
	answers
	translations
	blueprints
	bazaar basics
	install linux
	install windows
	Slide 21
	decentralized model with gatekeeper
	gatekeeper code changes
	setting up local repository
	working on a bug
	proposing a branch for review
	distributed source control concepts
	small work units
	supertask
	milestones
	cirrus milestone
	closing a bug through launchpad and bazaar
	merging and resolving conflicts
	merge
	gconflicts
	using meld
	using meld for visual diffs
	bzr resolve
	resources
	Slide 40
	code style
	code style rules
	style - class names
	style - method names
	classes
	style - assignment
	style - comparison
	style - braces 1
	style - braces 2
	check the wiki
	inside the code
	directory organization
	directory organization 3
	drizzled directory 1
	drizzled directory 2
	drizzled directory 3
	drizzled directory 4
	plugin directory
	libdrizzle
	easy first steps
	don't dig too deep
	Slide 62
	Slide 63
	Slide 64
	overview architecture divider
	system arch 1
	system arch 2
	a birdseye view
	ignore the kernel
	under the hood
	drizzle kernel
	session object
	session flow
	Slide 74
	session handling
	Slide 76
	session->executeStatement
	Slide 78
	Slide 79
	parsing a statement
	Slide 81
	parsing 2
	parsing 3
	mysql_execute_command
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	optimizer 1
	optimizer 3
	execution
	Slide 94
	Slide 95
	Slide 96
	drizzle plugin basics divider
	plugin development basics
	plugin development basics 2
	plugin.ini
	plugin.ini to data dictionary
	module initialization
	module init example
	what are plugin hooks
	plugin::Authentication example
	example plugin hook
	testing your plugin
	creating test cases
	running your test cases

