

Developing Replication
Plugins for Drizzle

Jay Pipes
jaypipes@gmail.com

http://joinfu.com

Padraig O'Sullivan
osullivan.padraig@gmail.com

http://posulliv.com

These slides released under the Creative Commons AttributionNoncommercialShare Alike 3.0 License

what we'll cover today

Contributing to Drizzle
Overview of Drizzle's architecture
Code walkthrough of Drizzle plugin basics
Overview of Drizzle's replication system
Understanding Google Protobuffers
The Transaction message
 In depth walkthrough of the filtered replicator
 In-depth walkthrough of the transaction log
The future, your ideas, making an impact

Drizzle is a Community

Being a Drizzler

Some things to remember...

No blame
No shame
Be open and transparent
Learn something from someone? Pass it on...

− By adding to the wiki (http://drizzle.org/wiki/)
− By sharing it with another contributor
− By blogging about it
− By posting what you learn to the mailing list

There is no such thing as a silly question

NO TROLLS.

Managing Your Code

Launchpad and BZR

Launchpad.net

The Drizzle community focal-point
− http://launchpad.net/drizzle

Join the drizzle-developers team:
− http://launchpad.net/~drizzle-developers
− Once on the team, you'll be able to push BZR

branches to the main Drizzle code repository

Launchpad.net

Code management
Task (blueprint) management
Bug reporting
Translations (Rosetta)
FAQ functionality

− http://www.joinfu.com/2008/08/a-contributors-guide-
to-launchpadnet-part-1-getting-started/

− http://www.joinfu.com/2008/08/a-contributors-guide-
to-launchpadnet-part-2-code-management/

Understanding how BZR isn't SVN

Drizzle developers use BZR for source control
 It's a distributed version control system
 It's NOT subversion, and takes some getting
used to
− But it's easy to use once you get used to it ;)

Remember, there is no spoon “central sources”
Code lives in branches
Branches live in a repository

Creating a local BZR branch

You create a branch on your local workstation
by branching an existing branch:

bzr branch lp:drizzle working
What does the above do?

− Creates a local (to your workstation) branch called
working which is derived from the development
series' default branch on Launchpad.net

− FYI: development series default branch is called
trunk

− FYI: there is another series on Launchpad.net called
stage. We push code to stage before it goes into
trunk.

Making code changes

You make changes to your local branch with an
editor, just like any other source control system

 If you add a new file to the source code, you
must tell BZR that you've done so:

bzr add drizzled/my_new_file.cc
The above would tell bzr to add the file
my_new_file.cc in the drizzled directory to
source control

Committing your changes

When done making changes, commit them:

bzr commit
The above will commit your changes to source
control and open up your default editor so that
you can type a comment describing your
changes

When you save and close your editor, a
changeset will be produced and saved by BZR

More on committing

When you bzr commit, you are committing your
changes locally
− You'll learn how to push those changes shortly...

You can automatically add a comment to your
commit (and not open an editor) with the -m
option:

bzr commit -m “Small changes to XXX”

Best Practice #1

Be as descriptive as possible for your commit
comments
− Allows others to better understand your code
− They allow you to have a decent history of why you

made certain changes
Good comment:

− “Fix issue where xyz struct on little-endian machines
was incorrectly stored to disk. Fixes Bug #221333”

Bad comment:
− “Fixes endian”

Publishing your branch

Must be a member of the Drizzle Developers
team

You will push your branch up to Launchpad:

bzr push lp:~$user/drizzle/$branchname
Where $user is your username on
Launchpad.net

Example of me pushing a branch called
“timezones”

bzr push lp:~jaypipes/drizzle/timezones

Taking a look at a branch

Once a branch is pushed to Launchpad.net, you
can give someone a link to it:
− http://code.launchpad.net/~$user/drizzle/

$branchname
Or...someone else can branch your published
branch! Your friend does:

bzr branch lp:~$user/drizzle/$branchname
And branches your code...

Proposing your branch for merging

What good is your code if it lives all by itself?
Get your code reviewed and merged into the
“mainline”

You must request your branch to be merged
Go to your branch on Launchpad.net:

− http://code.launchpad.net/~$user/drizzle/
$branchname

Best Practice #2

Launchpad Blueprints are a way to track
progress on tasks you work on

Create detailed blueprints for stuff you work on
and you can:
− Assign the blueprint to yourself
− Link your branch to the blueprint
− Track progress of your work on a task
− Create dependencies (and visualize them)
− Request mentoring on your task
− Offer mentoring to someone else!

Inside the Code

Overview of the Drizzle Code Base

directory organization

/client
− Client programs (drizzle.cc, drizzledump.cc etc)

/config
− Scripts such as autorun.sh for the build process

/extra
− Contains my_print_defaults.cc
− Will be going away this summer (yeah! \o/)

/gnulib
− Portability headers

directory organization (cont'd)

/support-files
− Various utility scripts

/tests
− Unit and functional test cases and suites
− As a contributor, you will want to familiarize yourself

with this directory! :)
/drizzled

− ALL kernel code
− Optimizer, parser, runtime, plugin APIs

/drizzled directory

/drizzled/memory
− Legacy memory allocation
− Will be a day of days when it is removed

/drizzled/internal
− MySQL portability/system library
− Many things removed from original MySQL mysys

library
− You should take care when using any function in here

 Check for a standard library prototype first!

/drizzled (kernel code)

/drizzled/atomic
− Portable C++ atomic<> implementation

/drizzled/message
− Google Protobuffer proto definitions

/drizzled/utf8
− C++ UTF8 thin library

/drizzled/util
− Bits and pieces of utility code

/drizzled (cont'd)

/drizzled/plugin
− Plugin base interface class definitions

/drizzled/item
− Item derived classes

/drizzled/field
− Field storage classes

/drizzled/function
− Built-in SQL functions

/drizzled (cont'd)

/drizzled/optimizer
− Most optimizer code, range operations, aggregation

/drizzled/statement
− SQL Statement classes
− e.g. statement::Insert

/drizzled/algorithm
− crc32, sha1, etc..

/plugin (module code)

Lots of plugin examples and default
implementations
− Authentication
− Data Dictionaries (TableFunction)
− Replicators
− Transaction log
− Logging
− Session scheduling
− Pluggable functions
− Storage engines

libdrizzle

BSD licensed, written in pure C by Eric Day
Client/server communication protocol
Clean, stack-based approach

− http://launchpad.net/libdrizzle
Requirement for developing Drizzle:

bzr branch lp:libdrizzle libdrizzle

cd libdrizzle; ./config/autorun.sh; ./configure

make && make check

sudo make install

Overview of Drizzle's
Architecture

drizzle's system architecture

“Microkernel” design means most features are
built as plugins
− Authentication, replication, logging, information

schema, storage engine, etc
− The kernel is really just the parser, optimizer, and

runtime
We are C++, not C+
We use open source libraries as much as
possible

− STL, gettext, Boost, pcre, GPB, etc
− Don't reinvent the wheel

drizzle's system architecture

No single “right way” of implementing
something
− Your solution may be great for your environment, but

not good for others
− And that's fine – it's what the plugin system is all

about
We focus on the APIs so you can focus on the
implementation

Drizzle is just one part of a large ecosystem
− Web servers, caching layers, authentication systems

Clients

Parser

Optimizer

Listener
Plugin

(Protocol)

Pluggable Storage Engine API

MyISAM InnoDB MEMORY Archive PBXT

Executor

Authentication
Plugin

Query Cache
Plugin

Logging
Plugin
(Pre)

Logging
Plugin
(Post)

Replication
PluginsReplication

Services

Transaction
Services

Scheduler
Plugin

ke
rn

el

Authorization
Plugin

User-Defined
Function
Plugins

Dictionary
Plugin

Plugin
Registration

Metadata
Services

ignore the kernel

You should be able to ignore the kernel as a
“black box”

Plugin developers should focus on their plugin
or module and not change anything in the
kernel

 If you need to meddle with or change something
in the kernel, it is a sign of a bad interface
− And you should file a bug! :)

Walkthrough of Drizzle
Plugin Basics

plugin/module development basics

A working C++ development environment
− http://www.joinfu.com/2008/08/getting-a-working-c-c-plusplus-

development-environment-for-developing-drizzle/

A module in Drizzle is a set of source files in
/plugin/ that implements some functionality
− For instance /plugin/transaction_log/* contains all

files for the Transaction Log module
Each module must have a plugin.ini file

− The fabulous work by Monty Taylor on the Pandora
build system automates most work for you

plugin/module development basics

A module contains one or more
implementations of a plugin class

A plugin class is any class interface declared
in /drizzled/plugin/
− For instance, the header file
/drizzled/plugin/transaction_applier.h declares the
interface for the plugin::TransactionApplier API

− The header files contain documentation for the
plugin interfaces

− You can also see documentation on the drizzle.org
website: http://drizzle.org/doxygen/

the plugin.ini

A description file for the plugin
Read during compilation and Pandora build
system creates appropriate linkage for you

Required fields:
− headers= <list of all header files in module>
− sources= <list of all source files in module>
− title= <name of the module/plugin>
− description= <decription for the module>

 from plugin.ini to data dictionary

[plugin]
title=Filtered Replicator
author=Padraig O Sullivan
version=0.2
license=PLUGIN_LICENSE_GPL
description=
 A simple filtered replicator which allows a user to filter out events based on a schema or
table name
load_by_default=yes
sources=filtered_replicator.cc
headers=filtered_replicator.h

drizzle> SELECT * FROM DATA_DICTIONARY.MODULES
 -> WHERE MODULE_NAME LIKE 'FILTERED%'\G
*************************** 1. row ***************************
 MODULE_NAME: filtered_replicator
 MODULE_VERSION: 0.2
 MODULE_AUTHOR: Padraig O'Sullivan
 IS_BUILTIN: FALSE
 MODULE_LIBRARY: filtered_replicator
MODULE_DESCRIPTION: Filtered Replicator
 MODULE_LICENSE: GPL

drizzle> SELECT * FROM DATA_DICTIONARY.PLUGINS
 -> WHERE PLUGIN_NAME LIKE 'FILTERED%'\G
*************************** 1. row ***************************
PLUGIN_NAME: filtered_replicator
PLUGIN_TYPE: TransactionReplicator
 IS_ACTIVE: TRUE
MODULE_NAME: filtered_replicator

module initialization

 Recommend placing module-level variables and
routines in /plugin/$module/module.cc

 Required: an initialization function taking a
reference to the plugin::Context object for your
module as its only parameter

− Typically named init()
 Optional: module-level system variables
 Required: DECLARE_PLUGIN($init, $vars) macro

inside above source file

module initialization example

static DefaultReplicator *default_replicator= NULL; /* The singleton replicator */

static int init(plugin::Context &context)
{
 default_replicator= new DefaultReplicator("default_replicator");
 context.add(default_replicator);
 return 0;
}

DRIZZLE_PLUGIN(init, NULL);

what are plugin hooks?

 Places in the source code that notify plugins
about certain events are called plugin hooks

 During the course of a query's execution, many
plugin hooks can be called

 The subclass of plugin::Plugin determines on
which events a plugin is notified and what gets
passed as a state parameter to the plugin during
notification

 These plugin hooks define the plugin's API

Example: plugin::Authentication

class Authentication : public Plugin
{
public:
 explicit Authentication(std::string name_arg)
 : Plugin(name_arg, "Authentication")
 {}
 virtual ~Authentication() {}

 virtual bool authenticate(const SecurityContext &sctx,
 const std::string &passwd)= 0;

 static bool isAuthenticated(const SecurityContext &sctx,
 const std::string &password);
};

 authenticate() is the pure virtual method that an
implementing class should complete

 isAuthenticated() is the plugin hook that is called
by the kernel to determine authorization

example plugin hook

class AuthenticateBy : public unary_function<plugin::Authentication *, bool>
{
...
 inline result_type operator()(argument_type auth)
 {
 return auth->authenticate(sctx, password);
 }
};

bool plugin::Authentication::isAuthenticated(const SecurityContext &sctx,
 const string &password)
{
...
 /* Use find_if instead of foreach so that we can collect return codes */
 vector<plugin::Authentication *>::iterator iter=
 find_if(all_authentication.begin(), all_authentication.end(),
 AuthenticateBy(sctx, password));
...
 if (iter == all_authentication.end())
 {
 my_error(ER_ACCESS_DENIED_ERROR, MYF(0),
 sctx.getUser().c_str(),
 sctx.getIp().c_str(),
 password.empty() ? ER(ER_NO) : ER(ER_YES));
 return false;
 }
 return true;
}

testing your plugin

 No plugin should be without corresponding test
cases

 Luckily, again because of the work of Monty
Taylor, your plugin can easily hook into the
Drizzle testing system

 Create a tests/ directory in your plugin's
directory, containing a t/ and an r/ subdirectory
(for “test” and “result”)

creating test cases

 Your plugin will most likely not be set to load by
default

 To activate your plugin, you need to start the
server during your tests with:

 --plugin-add=$module

 To automatically have the server started with
command-line options by the Drizzle test suite,
create a file called $testname-master.opt and place
it along with your test case in your /plugin/
$module/tests/t/ directory

running your test cases

 Simply run the test-run.pl script with your suite:
jpipes@serialcoder:~/repos/drizzle/trunk$ cd tests/
jpipes@serialcoder:~/repos/drizzle/trunk/tests$./test-run --suite=transaction_log
Drizzle Version 2010.04.1439
...
==
DEFAULT STORAGE ENGINE: innodb
TEST RESULT TIME (ms)
--

transaction_log.alter [pass] 1025
transaction_log.auto_commit [pass] 650
transaction_log.blob [pass] 661
transaction_log.create_select [pass] 688
transaction_log.create_table [pass] 413
transaction_log.delete [pass] 1744
transaction_log.filtered_replicator [pass] 6132
...
transaction_log.schema [pass] 137
transaction_log.select_for_update [pass] 6496
transaction_log.slap [pass] 42522
transaction_log.sync_method_every_write [pass] 23
transaction_log.temp_tables [pass] 549
transaction_log.truncate [pass] 441
transaction_log.truncate_log [pass] 390
transaction_log.udf_print_transaction_message [pass] 408
transaction_log.update [pass] 1916
--
Stopping All Servers
All 28 tests were successful.

Overview of Drizzle's
Replication System

not in Kansas MySQL anymore

 Drizzle's replication system looks nothing like
MySQL

 Drizzle is entirely row-based (yes even DDL)
 Forget the terms master, slave, and binlog
 We use the terms publisher, subscriber,

replicator and applier
 We have a transaction log, but it is not required

for replication
− Drizzle's transaction log is a module
− The transaction log module has example

implementations of an applier

role of the kernel in replication

 Marshall all sources of and targets for
replicated data

 Construct objects of type message::Transaction
that represent the changes made in the server

 Push the Transaction messages out to the
replication streams

 Coordinate requests from Subscribers with
registered Publishers

Client
issues DML that
modifies data

TransactionServices
constructs Transaction

message object

ke
rn

el

ReplicationServices
pushes Transaction

message out to
all replication

streams

plugin::StorageEngine
makes changes to data

store

TransactionServices
calls

commitTransaction()

plugin::TransactionReplicator
calls replicate()

Flow of events when
client changes data state

plugin::TransactionApplier
calls apply()

what is a replication stream?

 A replication stream is the pair of a replicator
and an applier

 Each applier must be matched with a replicator
− Can be done via command-line arguments
− Can be hard-coded

 To see the replication streams that are active,
you can query DATA_DICTIONARY.REPLICATION_STREAMS:

drizzle> select * from data_dictionary.replication_streams;
+--------------------+-------------------------+
| REPLICATOR | APPLIER |
+--------------------+-------------------------+
| default_replicator | transaction_log_applier |
+--------------------+-------------------------+
1 row in set (0 sec)

the Transaction message

 The Transaction message is the basic unit of
work in the replication system

 Represents a set of changes that were made to
a server

 Compressed binary format
 Google Protobuffer message

Understanding Google
Protobuffers

protobuffers are XML on crack

 Google protobuffers
− Compiler (protoc)
− Library (libprotobuf)

 Compiler consumes a .proto file and produces
source code files containing classes the
represent your data

− In a variety of programming languages
 Library contains routines and classes used in

working with, serializing, and parsing
protobuffer messages

http://code.google.com/apis/protocolbuffers/docs/overview.html

The .proto file

 Declares message definitions
− Simple Java/C++-like format

 Messages have one or more fields
 Fields are of a specific type

− uint32, string, bytes, etc.
 Fields have a specifier

− required, optional, repeated
 Submessages and enumerations too!

example .proto file

package drizzled.message;
option optimize_for = SPEED;

/*
 Context for a transaction.
*/
message TransactionContext
{
 required uint32 server_id = 1; /* Unique identifier of a server */
 required uint64 transaction_id = 2; /* Globally-unique transaction ID */
 required uint64 start_timestamp = 3; /* Timestamp of when the transaction started */
 required uint64 end_timestamp = 4; /* Timestamp of when the transaction ended */
}

 package sets the namespace for the generated
code

− In C++, the TransactionContext class would be
created in the drizzled::message:: namespace

 To compile the .proto, we use the protoc
compiler:

$> protoc --cpp_out=. transaction.proto

generated code files

 For C++, protoc produces two files, one header
and one source file

− transaction.pb.h, transaction.pb.cc
 To use these classes, simply #include the

header file and start using your new message
classes:

#include “transaction.pb.h”;

using namespace drizzled;

message::TransactionContext tc;
tc.set_transaction_id(100000);
...

The C++ POD GPB API in one slide

 To access the data, method is same as the field
 To set the data, append set_ to the field name
 To check existence, append has_ to the field

name
 To add a new repeated field, append add_ to the

field name
 To get a pointer to a field that is a submessage,

append mutable_ to the field name
− All memory for fields is managed by GPB; when you

delete the main object, all memory is freed

serializing GPB messages

 Serialize to a C++ stream:
message::Transaction transaction;
// fill the transaction's fields...
fstream output("myfile", ios::out | ios::binary);
transaction.SerializeToOstream(&output);

 or a file descriptor:
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <stdio.h>

using namespace google;

int myfile= open(“myfile”, O_WRONLY);
protobuf::io::ZeroCopyOutputStream *output= new protobuf::io::FileOutputStream(myfile);
transaction.SerializeToZeroCopyStream(output);

 or a std::string:
string buffer(“”);
transaction.SerializeToString(&buffer);

serialize to raw bytes

 Full control...serializing to raw bytes:
#include <google/protobuf/io/coded_stream.h>
#include <vector>

using namespace google;

size_t message_byte_length= transaction.ByteSize();
vector<uint8_t> buffer;
uint8_t *ptr= &buffer[0];

buffer.reserve(message_byte_length + sizeof(uint32_t));

/*
 * Write the length of the message then the serialized
 * message to the raw byte buffer
 */
ptr= protobuf::io::CodedOutputStream::WriteLittleEndian32ToArray(
 static_cast<uint32_t>(message_byte_length), ptr);

ptr= transaction.SerializeWithCachedSizesToArray(ptr);

parsing serialized GPB messages

 Parsing from a C++ stream:
message::Transaction transaction;
fstream output("myfile", ios::in | ios::binary);
transaction.ParseFromIstream(&output);

 or a file descriptor:
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <stdio.h>

using namespace google;

int myfile= open(“myfile”, O_RDONLY);
protobuf::io::ZeroCopyOutputStream *intput= new protobuf::io::FileInputStream(myfile);
transaction.ParseFromZeroCopyStream(input);

 or a std::string:
string buffer(“”);
transaction.SerializeToString(&buffer);

message::Transaction copy_transaction;
copy_transaction.ParseFromString(buffer);

The Transaction message

the Transaction message

 The Transaction message is the basic unit of
work in the replication system

 Compressed binary format
 Represents a set of changes that were made to

a server
 Most of the time, the Transaction message

represents the work done in a single SQL
transaction

− Large SQL transactions may be broken into multiple
Transaction messages

the Transaction message format

Transaction Context

Statements

Statement 1

Statement 2

Statement N

..
.

 TransactionContext
− Transaction ID
− Start and end timestamps
− Server ID
− Channel ID (optional)

 Statements
− One or more Statement

submessages
− Describes the rows

modified in a SQL
statement

TransactionContext message

message Transaction
{
 required TransactionContext transaction_context = 1;
 repeated Statement statement = 2;
}

message TransactionContext
{
 required uint32 server_id = 1; /* Unique identifier of a server */
 required uint64 transaction_id = 2; /* Channel-unique transaction ID */
 required uint64 start_timestamp = 3; /* Timestamp of when the transaction started */
 required uint64 end_timestamp = 4; /* Timestamp of when the transaction ended */
 optional uint32 channel_id = 5; /* Scope of uniqueness of transaction ID */
}

 Would you add additional fields?
− user_id? session_id? something else?

 Add fields as optional, recompile, able to use
those custom fields right away in your plugins

− Now that's extensible!

the Statement message format

Required Fields

Statement-dependent Fields

 Required fields
− Type
− Start and end timestamps

 Optional SQL string
 Statement-dependent

fields
− For DML: header and data

message
− For DDL: submessage

representing a DDL
statement

Optional SQL string

the Statement message

message Statement
{
 enum Type
 {
 ROLLBACK = 0; /* A ROLLBACK indicator */
 INSERT = 1; /* An INSERT statement */
 DELETE = 2; /* A DELETE statement */
 UPDATE = 3; /* An UPDATE statement */
 TRUNCATE_TABLE = 4; /* A TRUNCATE TABLE statement */
 CREATE_SCHEMA = 5; /* A CREATE SCHEMA statement */
 ALTER_SCHEMA = 6; /* An ALTER SCHEMA statement */
 DROP_SCHEMA = 7; /* A DROP SCHEMA statement */
 CREATE_TABLE = 8; /* A CREATE TABLE statement */
 ALTER_TABLE = 9; /* An ALTER TABLE statement */
 DROP_TABLE = 10; /* A DROP TABLE statement */
 SET_VARIABLE = 98; /* A SET statement */
 RAW_SQL = 99; /* A raw SQL statement */
 }
 required Type type = 1; /* The type of the Statement */
 required uint64 start_timestamp = 2; /* Nanosecond precision timestamp of when the
 Statement was started on the server */
 required uint64 end_timestamp = 3; /* Nanosecond precision timestamp of when the
 Statement finished executing on the server */
 optional string sql = 4; /* May contain the original SQL string */

 /* ... (cont'd on later slide) */
}

getting data from the message

 For data fields in a message, to get the value of
the field, simply call a method the same as the
name of the field:

message::Transaction &transaction= getSomeTransaction();
const message::TransactionContext &trx_ctx= transaction.transaction_context();

cout << “Transaction ID: “ << trx_ctx.transaction_id << endl;

message::Statement::Type type= statement.type();

switch (type)
{
 case message::Statement::INSERT:
 // do something for an insert...
 case message::Statement::UPDATE:
 // do something for an update...
}

 Enumerations are also easily used:

accessing a repeated element

 Elements in a repeated field are accessed via an
index, and a $fieldname_size() method returns
the number of elements:

using namespace drizzled;

const message::Transaction &transaction= getSomeTransaction();

/* Get the number of elements in the repeated field */
size_t num_statements= transaction.statement_size();

for (size_t x= 0; x < num_statements; ++x)
{
 /* Access the element via the 0-based index */
 const message::Statement &statement= transaction.statement(x);

 /* For optional fields, a has_$fieldname() method is available
 to check for existence */
 if (statement.has_sql())
 {
 cout << statement.sql() << endl;
 }
}

the specific Statement message

message Statement
{
 /* ... cont'd from a previous slide */

 /*
 * Each Statement message may contain one or more of
 * the below sub-messages, depending on the Statement's type.
 */
 optional InsertHeader insert_header = 5;
 optional InsertData insert_data = 6;
 optional UpdateHeader update_header = 7;
 optional UpdateData update_data = 8;
 optional DeleteHeader delete_header = 9;
 optional DeleteData delete_data = 10;
 optional TruncateTableStatement truncate_table_statement = 11;
 optional CreateSchemaStatement create_schema_statement = 12;
 optional DropSchemaStatement drop_schema_statement = 13;
 optional AlterSchemaStatement alter_schema_statement = 14;
 optional CreateTableStatement create_table_statement = 15;
 optional AlterTableStatement alter_table_statement = 16;
 optional DropTableStatement drop_table_statement = 17;
 optional SetVariableStatement set_variable_statement = 18;
}

 Example: for an INSERT SQL statement, the
Statement message will contain an insert_header
and insert_data field

insert header and data messages

/*
 * Represents statements which insert data into the database:
 *
 * INSERT
 * INSERT SELECT
 * LOAD DATA INFILE
 * REPLACE (is a delete and an insert)
 *
 * @note
 *
 * Bulk insert operations will have >1 data segment, with the last data
 * segment having its end_segment member set to true.
 */
message InsertHeader
{
 required TableMetadata table_metadata = 1; /* Metadata about the table affected */
 repeated FieldMetadata field_metadata = 2; /* Metadata about fields affected */
}

message InsertData
{
 required uint32 segment_id = 1; /* The segment number */
 required bool end_segment = 2; /* Is this the final segment? */
 repeated InsertRecord record = 3; /* The records inserted */
}

/*
 * Represents a single record being inserted into a single table.
 */
message InsertRecord
{
 repeated bytes insert_value = 1;
}

tip: statement_transform

 Looking for examples of how to use the
Transaction and Statement messages?

 The /drizzled/message/transaction.proto file has
extensive documentation

 Also check out the statement_transform
library in /drizzled/message/statement_transform.cc

 Shows how to contruct SQL statements from
the information in a Transaction message

 The statement_transform library is used in
utility programs such as
/drizzled/message/table_raw_reader.cc

Code walkthrough of the
Filtered Replicator module

replicators can filter/transform

 plugin::TransactionReplicator's function is to
replicate the Transaction message to the
plugin::TransactionApplier in a replication stream

 You can filter or transform a Transaction
message before passing it off to the applier

 Only one method in the API:
 /**
 * Replicate a Transaction message to a TransactionApplier.
 *
 * @param Pointer to the applier of the command message
 * @param Reference to the current session
 * @param Transaction message to be replicated
 */
 virtual ReplicationReturnCode replicate(TransactionApplier *in_applier,
 Session &session,
 message::Transaction &to_replicate)= 0;

module overview

 Allows filtering of transaction messages by
schema name or table name

− We construct a new transaction message containing
only Statement messages that have not been
filtered

 Includes support for the use of regular
expressions

 Schemas and tables to filter are specified in
system variables

− filtered_replicator_filteredschemas
− filtered_replicator_filteredtables

module initialization

 Very similar to what we saw with the default
replicator:

 static FilteredReplicator *filtered_replicator= NULL;

 static int init(plugin::Context &context)
 {
 filtered_replicator= new(std::nothrow)
 FilteredReplicator("filtered_replicator",
 sysvar_filtered_replicator_sch_filters,
 sysvar_filtered_replicator_tab_filters);
 if (filtered_replicator == NULL)
 {
 return 1;
 }
 context.add(filtered_replicator);
 return 0;
 }

obtaining schema/table name

 For each statement in the transaction message,
we obtain the schema name and table name in
the parseStatementTableMetadata method:

void parseStatementTableMetadata(const message::Statement &in_statement,
 string &in_schema_name,
 string &in_table_name) const
{
 switch (in_statement.type())
 {
 case message::Statement::INSERT:
 {
 const message::TableMetadata &metadata= in_statement.insert_header().table_metadata();
 in_schema_name.assign(metadata.schema_name());
 in_table_name.assign(metadata.table_name());
 break;
 }
 case message::Statement::UPDATE:
 …
 }
}

filtering by schema name

 We search through the list of schemas to filter
to see if there is a match

 pthread_mutex_lock(&sch_vector_lock);
 vector<string>::iterator it= find(schemas_to_filter.begin(),
 schemas_to_filter.end(),
 schema_name);
 if (it != schemas_to_filter.end())
 {
 pthread_mutex_unlock(&sch_vector_lock);
 return true;
 }
 pthread_mutex_unlock(&sch_vector_lock);

regular expression filtering

 We use pcre to perform regular expression
filtering if enabled:

 /*
 * If regular expression matching is enabled for schemas to filter, then
 * we check to see if this schema name matches the regular expression that
 * has been specified.
 */
 if (sch_regex_enabled)
 {
 int32_t result= pcre_exec(sch_re,
 NULL,
 schema_name.c_str(),
 schema_name.length(),
 0,
 0,
 NULL,
 0);
 if (result >= 0)
 {
 return true;
 }
 }

filtering Statements

 Schema and table name are converted to lower
case since we store the list of schemas and
tables to filter in lower case

 If neither matches a filtering condition, we add
the statement to our new filtered transaction:

 /* convert schema name and table name to lower case */
 std::transform(schema_name.begin(), schema_name.end(),
 schema_name.begin(), ::tolower);
 std::transform(table_name.begin(), table_name.end(),
 table_name.begin(), ::tolower);

 if (! isSchemaFiltered(schema_name) &&
 ! isTableFiltered(table_name))
 {
 message::Statement *s= filtered_transaction.add_statement();
 s= statement; / copy construct */
 }

pass Transaction on to applier

 Finally, we pass on our filtered transaction to
an applier:

if (filtered_transaction.statement_size() > 0)
{
 /*
 * We can now simply call the applier's apply() method, passing
 * along the supplied command.
 */
 message::TransactionContext *tc= filtered_transaction.mutable_transaction_context();
 tc= to_replicate.transaction_context(); / copy construct */
 return in_applier->apply(in_session, filtered_transaction);
}

system variables

 Control module's configuration
 Each system variable has two associated

functions
− A check function which can verify the input is

correct
− An update function which actually updates the value

of the variable
 System variable handling will be over-hauled in

Drizzle so not essential to understand how these
currently work

Code walkthrough of the
Transaction Log module

appliers can log/analyze/apply

 plugin::TransactionApplier's function is to apply
the Transaction message to some target or
analyze the transaction in some way

 You cannot modify the Transaction message
− If you need to modify the message, you likely should

be using TransactionReplicator::replicate()
 Only one method in the API:
 /**
 * Applies a Transaction message to some target
 *
 * @param Reference to the current session
 * @param Transaction message to be applied
 */
 virtual ReplicationReturnCode apply(Session &session,
 const message::Transaction &to_apply)= 0;

module overview

 Provides a log of compressed, serialized
Transaction messages

 Supports checksumming of written messages
 Flexible file sync behaviour

− Similar to innodb_flush_log_at_trx_commit
 Uses a scoreboard of write buffers to minimize

memory usage
 Components are all plugin examples

− TransactionApplier, Data Dictionary, user-defined
Functions

transaction log components

TransactionLogApplier

vector<WriteBuffer>

TransactionLog

Data Dictionary

TransactionLogView

TransactionLogEntriesView

TransactionLogTransactionsView

TransactionLogIndex

vector<TransactionLogIndexEntry>

User Defined Functions

HexdumpTransactionMessageFunction

PrintTransactionMessageFunction

code flow through module

TransactionLogApplier::apply()

TransactionLog::packTransactionInLogEntry()

TransactionLog::writeEntry()

TransactionLogIndex::addEntry()

MessageLite::SerializeWithCachedSizesToArray()

pwrite()

entry type (4 bytes)

entry length (4 bytes)

transaction message (variable # bytes)

checksum (4 bytes)

transaction log entry format

TransactionLogApplier header

class TransactionLogApplier: public drizzled::plugin::TransactionApplier
{
public:
 TransactionLogApplier(const std::string name_arg,
 TransactionLog *in_transaction_log,
 uint32_t in_num_write_buffers);

 /** Destructor */
 ~TransactionLogApplier();

 /**
 * Applies a Transaction to the transaction log
 *
 * @param Session descriptor
 * @param Transaction message to be replicated
 */
 drizzled::plugin::ReplicationReturnCode
 apply(drizzled::Session &in_session,
 const drizzled::message::Transaction &to_apply);
private:
 TransactionLog &transaction_log;
 /* This Applier owns the memory of the associated TransactionLog - so we
 have to track it. */
 TransactionLog *transaction_log_ptr;
 uint32_t num_write_buffers; ///< Number of write buffers used
 std::vector<WriteBuffer *> write_buffers; ///< array of write buffers

 /**
 * Returns the write buffer for the supplied session
 *
 * @param Session descriptor
 */
 WriteBuffer *getWriteBuffer(const drizzled::Session &session);
};

TransactionLog header
class TransactionLog
{
public:
 static size_t getLogEntrySize(const drizzled::message::Transaction &trx);

 uint8_t *packTransactionIntoLogEntry(const drizzled::message::Transaction &trx,
 uint8_t *buffer,
 uint32_t *checksum_out);

 off_t writeEntry(const uint8_t *data, size_t data_length);
private:
 static const uint32_t HEADER_TRAILER_BYTES= sizeof(uint32_t) + /* 4-byte msg type header */
 sizeof(uint32_t) + /* 4-byte length header */
 sizeof(uint32_t); /* 4 byte checksum trailer */

 int syncLogFile();

 int log_file; ///< Handle for our log file
 drizzled::atomic<off_t> log_offset; ///< Offset in log file where we write next entry
 uint32_t sync_method; ///< Determines behaviour of syncing log file
 time_t last_sync_time; ///< Last time the log file was synced
 bool do_checksum; ///< Do a CRC32 checksum when writing Transaction message to log?
};

TransactionLogApplier::apply()

plugin::ReplicationReturnCode
TransactionLogApplier::apply(Session &in_session,
 const message::Transaction &to_apply)
{
 size_t entry_size= TransactionLog::getLogEntrySize(to_apply);
 WriteBuffer *write_buffer= getWriteBuffer(in_session);

 uint32_t checksum;

 write_buffer->lock();
 write_buffer->resize(entry_size);
 uint8_t *bytes= write_buffer->getRawBytes();
 bytes= transaction_log.packTransactionIntoLogEntry(to_apply,
 bytes,
 &checksum);

 off_t written_to= transaction_log.writeEntry(bytes, entry_size);
 write_buffer->unlock();

 /* Add an entry to the index describing what was just applied */
 transaction_log_index->addEntry(TransactionLogEntry(ReplicationServices::TRANSACTION,
 written_to,
 entry_size),
 to_apply,
 checksum);
 return plugin::SUCCESS;
}

TransactionLog::packTransactionIntoLogEntry()

uint8_t *TransactionLog::packTransactionIntoLogEntry(const message::Transaction &trx,
 uint8_t *buffer,
 uint32_t *checksum_out)
{
 uint8_t *orig_buffer= buffer;
 size_t message_byte_length= trx.ByteSize();

 /*
 * Write the header information, which is the message type and
 * the length of the transaction message into the buffer
 */
 buffer= protobuf::io::CodedOutputStream::WriteLittleEndian32ToArray(
 static_cast<uint32_t>(ReplicationServices::TRANSACTION), buffer);
 buffer= protobuf::io::CodedOutputStream::WriteLittleEndian32ToArray(
 static_cast<uint32_t>(message_byte_length), buffer);

 /*
 * Now write the serialized transaction message, followed
 * by the optional checksum into the buffer.
 */
 buffer= trx.SerializeWithCachedSizesToArray(buffer);

 if (do_checksum)
 {
 *checksum_out= drizzled::algorithm::crc32(
 reinterpret_cast<char *>(buffer) - message_byte_length, message_byte_length);
 }
 else
 *checksum_out= 0;

 /* We always write in network byte order */
 buffer= protobuf::io::CodedOutputStream::WriteLittleEndian32ToArray(*checksum_out, buffer);
 /* Reset the pointer back to its original location... */
 buffer= orig_buffer;
 return orig_buffer;
}

TransactionLog::writeEntry()
off_t TransactionLog::writeEntry(const uint8_t *data, size_t data_length)
{
 ssize_t written= 0;

 /* Do an atomic increment on the offset of the log file position */
 off_t cur_offset= log_offset.fetch_and_add(static_cast<off_t>(data_length));

 /* Write the full buffer in one swoop */
 do
 {
 written= pwrite(log_file, data, data_length, cur_offset);
 }
 while (written == -1 && errno == EINTR); /* Just retry the write when interrupted */

 if (unlikely(written != static_cast<ssize_t>(data_length)))
 {
 errmsg_printf(ERRMSG_LVL_ERROR,
 _("Failed to write full size of log entry. Tried to write %" PRId64
 " bytes at offset %" PRId64 ", but only wrote %" PRId32
 " bytes. Error: %s\n"),
 static_cast<int64_t>(data_length),
 static_cast<int64_t>(cur_offset),
 static_cast<int64_t>(written),
 strerror(errno));
 }

 int error_code= syncLogFile();

 if (unlikely(error_code != 0))
 {
 errmsg_printf(ERRMSG_LVL_ERROR,
 _("Failed to sync log file. Got error: %s\n"),
 strerror(errno));
 }
 return cur_offset;
}

What's up with the Publisher and
Subscriber plugins?

we need your input

 These plugin's APIs are still being developed
 The idea is for responsibility to be divided like

so:
− plugin::Publisher will be responsible for describing

the state of each replication channel and
communicating with subscribers on separate ports

 Think: a Publisher is a specialized server for each
subscriber

− plugin::Subscriber will be responsible for pulling
data from a plugin::Publisher and applying that data
to a replica node

 Think: relay-log.info and master.info files as a C++ class
interface

Possible SQL API

 SQL API for communications yet to be finalized
 Possible SQL to run on a replica node:
SUBSCRIBE TO <host> [CHANNEL n]
 [UNTIL [<timestamp> | <transaction_id>]]

 Possible SQL to create a snapshot archive for
shipping to a new node for starting up a new
replica:

BACKUP <schema_list> TO <archive_filename>
 [UNTIL [<timestamp> | <transaction_id>]]

rabbitmq and replication

 Developed by Marcus Eriksson
− http://developian.com

 Can replicate externally or internally
− External by reading the Drizzle transaction log and

sending logs to RabbitMQ
 Multi-threaded applier constructs SQL statements

from transaction messages in log files on replica
− Internal via a C++ plugin

 /plugin/rabbitmq/
 Implements plugin::TransactionApplier
 Sends transaction message to RabbitMQ

A Memcached Query Cache

 Google Summer of Code project
 Two students

− Djellel Difallah
− Siddharth Singh

 Uses plugin::TransactionApplier and
plugin::QueryCache to implement a query cache
with fine-grained invalidation

− MySQL Query Cache has very coarse invalidation
 plugin::TransactionApplier API uses the row-

based Transaction message to determine tuple
ranges that must be invalidated

Drizzle Developer Day this Friday

 Mezzanine level, this Friday, see drizzle wiki
 Hackfest

− Come with ideas, leave with working programs
 We'll teach you how to create INFORMATION_SCHEMA

and DATA_DICTIONARY views for your modules
− In 15 minutes. Yeah, it's that easy.

 We'll demonstrate creating user-defined
functions

 Like Python?
− We'll show you how to read the trx log in 15 lines of

Python code

	title
	what we'll cover today
	being a drizzler
	some things to remember
	no trolls
	Slide 6
	launchpad 1
	launchpad 2
	bzr vs svn
	creating a local bzr branch
	making code changes
	committing your changes
	more on committing
	best practice 1
	Publishing a branch
	Taking a look at a branch
	propose merge 1
	best practice #2
	inside the code
	directory organization
	directory organization 3
	drizzled directory 1
	drizzled directory 2
	drizzled directory 3
	drizzled directory 4
	plugin directory
	libdrizzle
	overview architecture divider
	system arch 1
	system arch 2
	a birdseye view
	ignore the kernel
	drizzle plugin basics divider
	plugin development basics
	plugin development basics 2
	plugin.ini
	plugin.ini to data dictionary
	module initialization
	module init example
	what are plugin hooks
	plugin::Authentication example
	example plugin hook
	testing your plugin
	creating test cases
	running your test cases
	overview replication system divider
	not in mysql anymore
	role of kernel in replication
	event flow data change
	what is a replication stream
	transaction message
	understanding gpb divider
	protobuffers are xml on crack
	the proto file
	example proto file
	generated code files
	c++ pod gpb api in one slide
	serializing messages
	serializing to raw bytes
	parsing gpb message
	transaction message divider
	Transaction message
	transaction message format
	statement message 1
	Statement message format
	the Statement message
	accessing fields in message
	accessing a repeated element
	statement message 2
	insert header and data
	statement transform library
	filtered replicator divider
	replicators can filter and transform
	filtered replicator module
	module initialization filtered replication
	obtaining schema/table names
	filtering schemas
	Slide 78
	Slide 79
	pass transaction to applier
	system variables
	transaction log module divider
	appliers can log/analyze
	transaction log overview
	transaction log components
	code flow through module
	TransactionLogApplier
	TransactionLog header
	TransactionLogApplier::apply()
	packTransactionIntoLogEntry
	writeEntry
	what's up with the publisher and subsciber plugins?
	we need your input
	possible SQL API
	Slide 95
	A Memcached Query Cache
	Slide 97

