

Join-fu: The Art of SQL
Part II – Intermediate Join-Fu

Jay Pipes
Community Relations Manager

MySQL
jay@mysql.com

http://jpipes.com

These slides released under the Creative Commons Attribution­Noncommercial­Share Alike 3.0 License

mailto:jay@mysql.com
http://jpipes.com/

intermediate join-fu

Practical examples, but meant to show techniques
of SQL problem solving

● Handling hierarchical queries
– Adjacency lists

– Nested sets

● Exploring GIS calculations in SQL
– Distance between two points

– Points within a given radius

● Reporting query techniques
– Running sums and aggregates

– Ranking return results

a word about fear...

Don't be afraid of SQL.

Remember...

SQL is your friend.

querying hierarchical structures

● Graphs and trees don't fit the relational model
well

● Common solutions tend to use either of two
techniques
– Recursion (yuck.)
– Application layer coding (ok.)

● A good solution blends two common tree-storage
models
– Adjacency list
– Nested sets

adjacency list model

● Very common but doesn't
scale

● Easy to query for:
– Who is my parent?
– Who are my children?

● Difficult to query for:
– How many levels are in my

tree?
– Who are ALL the descendants

of my grandfather's brother?

CREATE TABLE People (
 person_id INT UNSIGNED NOT NULL
, name VARCHAR(50) NOT NULL
, parent INT UNSIGNED NULL
, PRIMARY KEY (person_id)
, INDEX (parent)
) ENGINE=InnoDB;

mysql> SELECT * FROM People;
+-----------+-------------------+--------+
| person_id | name | parent |
+-----------+-------------------+--------+
1	Great grandfather	NULL
2	Grandfather	1
3	Great Uncle	1
4	Father	2
5	Uncle	2
6	Me	4
7	Brother	4
+-----------+-------------------+--------+
7 rows in set (0.00 sec)

adjacency list model – easy stuff

● Who is my parent?

● Who are my
father's children?

● Who are my
father's father's
grandchildren?

mysql> SELECT p2.*
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.parent = p2.person_id
 -> WHERE p1.person_id = 6;
+-----------+--------+--------+
| person_id | name | parent |
+-----------+--------+--------+
| 4 | Father | 2 |
+-----------+--------+--------+

mysql> SELECT p.*
 -> FROM People p
 -> WHERE p.parent = 4;
+-----------+---------+--------+
| person_id | name | parent |
+-----------+---------+--------+
| 6 | Me | 4 |
| 7 | Brother | 4 |
+-----------+---------+--------+

mysql> SELECT p3.*
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.person_id = p2.parent
 -> INNER JOIN People p3
 -> ON p2.person_id = p3.parent
 -> WHERE p1.person_id = 2;
+-----------+---------+--------+
| person_id | name | parent |
+-----------+---------+--------+
| 6 | Me | 4 |
| 7 | Brother | 4 |
+-----------+---------+--------+

adjacency list model – hard stuff

● How many levels
in my hierarchy?
– Told you. Yuck.

● Find all
descendants of a
specific person
– Double yuck.

● Basic join-fu how
not to do SQL?
– Avoid cursors,

iterators, etc

DELIMITER //
CREATE PROCEDURE get_max_levels()
BEGIN
SET @lowest_parent :=
 (SELECT MAX(parent) FROM People WHERE parent IS NOT NULL);
SET @levels := 1;

SET @current_parent = @lowest_parent;

WHILE @current_parent IS NOT NULL DO
 SET @current_parent :=
 (SELECT parent FROM People WHERE person_id = @current_parent);
 SET @levels := @levels + 1;
END WHILE;

SELECT @levels;
END //

DELIMITER //
CREATE PROCEDURE get_node_descendants(IN to_find INT)
BEGIN
DROP TEMPORARY TABLE IF EXISTS child_ids;
CREATE TEMPORARY TABLE child_ids (child_id INT UNSIGNED NOT NULL);
 ...
WHILE @last_count_children > @new_count_children DO
 ...
 INSERT INTO child_ids
 SELECT person_id FROM new_children WHERE blah blah...;
 SET @new_count_children := (SELECT COUNT(*) FROM child_ids);
END WHILE;

SELECT p.* FROM People
INNER JOIN child_ids
ON person_id = child_id;

END //

nested sets model

● Uncommon because it is
hard to grasp at first, but it
really scales

● Easy to query for:
– How many levels are in my

tree?
– Who are ALL the descendants

of my grandfather's brother?
– Various complex queries that

would be impossible for the
adjacency list model

CREATE TABLE People (
 person_id INT UNSIGNED NOT NULL
, name VARCHAR(50) NOT NULL
, left_side INT UNSIGNED NOT NULL
, right_side INT UNSIGNED NOT NULL
, PRIMARY KEY (person_id)
, INDEX (parent)
) ENGINE=InnoDB;

mysql> SELECT * FROM People;
+-----------+-------------------+--------+
| person_id | name | parent |
+-----------+-------------------+--------+
1	Great grandfather	NULL
2	Grandfather	1
3	Great Uncle	1
4	Father	2
5	Uncle	2
6	Me	4
7	Brother	4
+-----------+-------------------+--------+
7 rows in set (0.00 sec)

nested sets model

● Each node in tree stores info about its location
– Each node stores a “left” and a “right”

● For the root node, “left” is always 1, “right” is always
2*n, where n is the number of nodes in the tree

● For all other nodes, “right” is always equal to the “left” +
(2*n) + 1, where n is the total number of child nodes of
this node

– So...all “leaf” nodes in a tree have a “right” = “left” + 1

– Allows SQL to “walk” the tree's nodes
● OK, got all that? :)

nested sets model

Great
Grandfather

Grandfather
Great
Uncle

UncleFather

Me Brother

1

2

3

4 5 6 7

8 9 10

11 12 13

14

● For the root node, “left” is always 1, “right” is always
2*n, where n is the number of nodes in the tree

● For all other nodes, “right” is always equal to the
“left” + (2*n) + 1, where n is the total number of child
nodes of this node

so, how is this easier?

● Easy to query for:
– How many levels are in my tree?
– Who are ALL the descendants of my grandfather's

brother?
– Various complex queries that would be impossible for

the adjacency list model
● Efficient processing via set-based logic

– Versus inefficient iterative/recursive model
● Basic operation is a BETWEEN predicate in a self

join condition
– Hey, you said you wanted advanced stuff...

nested list model – sets, not procedures...

● What is the depth
of each node?
– Notice the

BETWEEN
predicate in use

● What about the
EXPLAIN output?
– Oops
– Add an index...

mysql> SELECT p1.person_id, p1.name, COUNT(*) AS level
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.left_side BETWEEN p2.left_side AND p2.right_side
 -> GROUP BY p1.person_id;
+-----------+-------------------+-------+
| person_id | name | level |
+-----------+-------------------+-------+
1	Great grandfather	1
2	Grandfather	2
3	Great Uncle	3
4	Father	4
5	Uncle	4
6	Me	3
7	Brother	2
+-----------+-------------------+-------+

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: p1
 type: ALL
 rows: 7
 Extra: Using temporary; Using filesort
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: p2
 type: ALL
 rows: 7
 Extra: Using where

ALTER TABLE People ADD UNIQUE INDEX ix_nsm (left_side, right_side);

find the max depth of the whole tree

● How do I find the max depth of the tree?
– If the last query shows the depth of each

node...then we build on the last query
mysql> SELECT MAX(level) AS max_level FROM (
 -> SELECT p1.person_id, COUNT(*) AS level
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.left_side BETWEEN p2.left_side AND p2.right_side
 -> GROUP BY p1.person_id
 ->) AS derived;
+-----------+
| max_level |
+-----------+
| 4 |
+-----------+
1 row in set (0.00 sec)

● Use this technique when solving set-based
problems
– Build on a known correct set and then intersect,

union, aggregate, etc against that set

good, but could be better...

● Using covering
indexes for
everything
– “Using index”

● Unfortunately,
we've got a
filesort
– “Using filesort”

mysql> EXPLAIN SELECT MAX(level) AS max_level FROM (
 -> SELECT p1.person_id, COUNT(*) AS level
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.left_side BETWEEN p2.left_side AND p2.right_side
 -> GROUP BY p1.person_id
 ->) AS derived\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 type: ALL
 rows: 7
*************************** 2. row ***************************
 id: 2
 select_type: DERIVED
 table: p1
 type: index
possible_keys: ix_nsm
 key: ix_nsm
 key_len: 8
 rows: 7
 Extra: Using index; Using temporary; Using filesort
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: p2
 type: index
possible_keys: ix_nsm
 key: ix_nsm
 key_len: 8
 rows: 7
 Extra: Using where; Using index

attacking unnecessary filesorts

● GROUP BY
implicitly orders
the results

● If you don't need
that sort, remove
it it using ORDER
BY NULL

mysql> EXPLAIN SELECT MAX(level) AS max_level FROM (
 -> SELECT p1.person_id, COUNT(*) AS level
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.left_side BETWEEN p2.left_side AND p2.right_side
 -> GROUP BY p1.person_id
 -> ORDER BY NULL
 ->) AS derived\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 type: ALL
 rows: 7
*************************** 2. row ***************************
 id: 2
 select_type: DERIVED
 table: p1
 type: index
possible_keys: ix_nsm
 key: ix_nsm
 key_len: 8
 rows: 7
 Extra: Using index; Using temporary;
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: p2
 type: index
possible_keys: ix_nsm
 key: ix_nsm
 key_len: 8
 rows: 7
 Extra: Using where; Using index

finding a node's descendants

● Who are ALL my
grandfather's descendants?
– Remember the nasty recursive

solution we had?

mysql> SELECT p1.name
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.left_side
 -> BETWEEN p2.left_side AND p2.right_side
 -> WHERE p2.person_id = @to_find
 -> AND p1.person_id <> @to_find;
+---------+
| name |
+---------+
| Father |
| Uncle |
| Me |
| Brother |
+---------+
4 rows in set (0.00 sec)

mysql> EXPLAIN SELECT p1.name
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.left_side BETWEEN p2.left_side AND p2.right_side
 -> WHERE p2.person_id = @to_find
 -> AND p1.person_id <> @to_find\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: p2
 type: const
possible_keys: PRIMARY,ix_nsm
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 1
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: p1
 type: range
possible_keys: PRIMARY,ix_nsm
 key: PRIMARY
 key_len: 4
 rows: 4
 Extra: Using where

finding all nodes above a specific node

● Who are ALL my
grandfather's predecessors?

● Look familiar to the last
query?
– What has changed?

● What about now?

mysql> SELECT p2.name
 -> FROM People p1
 -> INNER JOIN People p2
 -> ON p1.left_side
 -> BETWEEN p2.left_side AND p2.right_side
 -> WHERE p1.person_id = @to_find
 -> AND p2.person_id <> @to_find;
+-------------------+
| name |
+-------------------+
| Great grandfather |
+-------------------+
1 row in set (0.00 sec)

SELECT p2.name
FROM People p1
INNER JOIN People p2
ON p1.left_side
BETWEEN p2.left_side AND p2.right_side
WHERE p1.person_id = @to_find
AND p2.person_id <> @to_find;

summarizing trees and graphs

● Lots more we could do with trees
– How to insert/delete/move a node in the tree
– How to connect the tree to aggregate reporting

results
– But not right now...

● Best practice
– Use both adjacency list and nested sets for various

query types
● Little storage overhead
● Best of both worlds

reporting techniques

● Running aggregates
– Without user variables
– Running sums and averages

● Ranking of results
– Using user variables
– Using JOINs!

running aggregates

● When we want to have a column which “runs” a
sum during the result set

SELECT
 MONTHNAME(created) AS Month
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created);
+----------+-------+
| Month | Added |
+----------+-------+
January	1
February	1
March	11
April	8
May	18
June	3
+----------+-------+
6 rows in set (0.00 sec)

????

+----------+-------+-------+
| Month | Added | Total |
+----------+-------+-------+
January	1	1
February	1	2
March	11	13
April	8	21
May	18	39
June	3	42
+----------+-------+-------+
6 rows in set (0.00 sec)

basic formula for running aggregates

● Join a set (table) to itself using a >= predicate
– ON x1.key >= x2.key

● Problem, though, when we are working with
pre-aggregated data
– Obviously, you can't do two GROUP BYs...

SELECT
 x1.key
, x1.some_column
, AGGREGATE_FN(x2.some_column) AS running_aggregate
FROM x AS x1
INNER JOIN x AS x2
ON x1.key >= x2.key
GROUP BY x1.key;

replacing sets in the running aggregate formula

● Stick to the formula,
but replace sets x1 and
x2 with your pre-
aggregated sets as
derived tables
– The right shows

replacing x with derived

SELECT
 x1.key
, x1.some_column
, AGGREGATE_FN(x2.some_column)
FROM x AS x1
INNER JOIN x AS x2
ON x1.key >= x2.key
GROUP BY x1.key;

SELECT
 x1.key
, x1.some_column
, AGGREGATE_FN(x2.some_column)
FROM (
SELECT
 MONTH(created) AS MonthNo
, MONTHNAME(created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created)
) AS x1
INNER JOIN (
SELECT
 MONTH(created) AS MonthNo
, MONTHNAME(created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created)
) AS x2
ON x1.key >= x2.key
GROUP BY x1.key;

finally, replace SELECT, ON and outer GROUP BY

● Replace the greyed-out area with the correct
fields

SELECT
 x1.key
, x1.some_column
, AGGREGATE_FN(x2.some_column)
FROM (
SELECT
 MONTH(created) AS MonthNo
, MONTHNAME(created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created)
) AS x1
INNER JOIN (
SELECT
 MONTH(created) AS MonthNo
, MONTHNAME(created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created)
) AS x2
ON x1.key >= x2.key
GROUP BY x1.key;

SELECT
x1.MonthNo
, x1.MonthName
, x1.Added
, SUM(x2.Added) AS RunningTotal
FROM (
SELECT
 MONTH(created) AS MonthNo
, MONTHNAME(created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created)
) AS x1
INNER JOIN (
SELECT
 MONTH(created) AS MonthNo
, MONTHNAME(created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created)
) AS x2
ON x1.MonthNo >= x2.MonthNo
GROUP BY x1.MonthNo;

and the running results...

● Easy enough to add running averages
– Simply add a column for AVG(x2.Added)

● Lesson to learn: stick to a known formula, then
replace formula elements with known sets of
data (Keep it simple!)

+---------+-----------+-------+--------------+
| MonthNo | MonthName | Added | RunningTotal |
+---------+-----------+-------+--------------+
1	January	1	1
2	February	1	2
3	March	11	13
4	April	8	21
5	May	18	39
6	June	3	42
+---------+-----------+-------+--------------+
6 rows in set (0.00 sec)

ranking of results

● Using user variables
– We set a @rank user variable and increment it for

each returned result
● Very easy to do in both SQL and in your

programming language code
– But, in SQL, you can use that produced set to join

with other results...

ranking with user variables

● Easy enough
– But what about ties in

the ranking?
● Notice that some of

the films have
identical prices, and
so should be tied...
– Go ahead and try to

produce a clean way of
dealing with ties using
user variables...

mysql> SET @rank = 0;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT film_id, LEFT(title, 30) as title
 -> , rental_rate, (@rank:= @rank + 1) as rank
 -> FROM film
 -> ORDER BY rental_rate DESC
 -> LIMIT 10;
+---------+----------------------+-------------+------+
| film_id | title | rental_rate | rank |
+---------+----------------------+-------------+------+
243	DOORS PRESIDENT	7.77	1
93	BRANNIGAN SUNRISE	7.70	2
321	FLASH WARS	7.50	3
938	VELVET TERMINATOR	7.50	4
933	VAMPIRE WHALE	7.49	5
246	DOUBTFIRE LABYRINTH	7.45	6
253	DRIFTER COMMANDMENTS	7.44	7
676	PHILADELPHIA WIFE	7.44	8
961	WASH HEAVENLY	7.41	9
219	DEEP CRUSADE	7.40	10
+---------+----------------------+-------------+------+
10 rows in set (0.00 sec)

Hmm, I have to
wonder what

“Deep Crusade” is
about ...

ranking with SQL – the formula

● Again, we use a formula
to compute ranked
results

● Technique: use a known
formulaic solution and
replace formula values
with known result sets

● The formula takes ties
into account with the >=
predicate in the join
condition

SELECT
x1.key_field
, x1.other_field
, COUNT(*) AS rank
FROM x AS x1
INNER JOIN x AS x2
 ON x1.rank_field <= x2.rank_field
GROUP BY
x1.key_field
ORDER BY
x1.rank_field DESC;

replace variables in the formula

SELECT
x1.key_field
, x1.other_field
, COUNT(*) AS rank
FROM x AS x1
INNER JOIN x AS x2
 ON x1.rank_field <= x2.rank_field
GROUP BY
x1.key_field
ORDER BY
x1.rank_field DESCC
LIMIT 10;

SELECT
x1.film_id
, x1.title
, x1.rental_rate
, COUNT(*) AS rank
FROM film AS x1
INNER JOIN film AS x2
 ON x1.rental_rate <= x2.rental_rate
GROUP BY
x1.film_id
ORDER BY
x1.rental_rate DESC
LIMIT 10;

+---------+----------------------+-------------+------+
| film_id | title | rental_rate | rank |
+---------+----------------------+-------------+------+
243	DOORS PRESIDENT	7.77	1
93	BRANNIGAN SUNRISE	7.70	2
938	VELVET TERMINATOR	7.50	4
321	FLASH WARS	7.50	4
933	VAMPIRE WHALE	7.49	5
246	DOUBTFIRE LABYRINTH	7.45	6
676	PHILADELPHIA WIFE	7.44	8
253	DRIFTER COMMANDMENTS	7.44	8
961	WASH HEAVENLY	7.41	9
219	DEEP CRUSADE	7.40	10
+---------+----------------------+-------------+------+

● Ties are now
accounted for

● Easy to grab a
“window” of the
rankings

– Just change LIMIT
and OFFSET

refining the performance...

● EXPLAIN produces:
+----+-------------+-------+------+---------------+------+---------+------+------+---------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+---------------------------------+
| 1 | SIMPLE | x2 | ALL | PRIMARY | NULL | NULL | NULL | 952 | Using temporary; Using filesort |
| 1 | SIMPLE | x1 | ALL | PRIMARY | NULL | NULL | NULL | 952 | Using where |
+----+-------------+-------+------+---------------+------+---------+------+------+---------------------------------+

● And the query ran in 1.49s (that's bad, mkay...)
● No indexes being used

– We add an index on film (film_id, rental_rate)
+-------+-------+-----------------+-----------------+---------+------+------+---+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+-------+-------+-----------------+-----------------+---------+------+------+---+
| x2 | index | ix_film_id | ix_film_id_rate | 4 | NULL | 967 | Using index; Using temporary; Using filesort |
| x1 | ALL | ix_rate_film_id | NULL | NULL | NULL | 967 | Using where |
+-------+-------+-----------------+-----------------+---------+------+------+---+

● Results: slightly better performance of 0.80s

– But, different GROUP and ORDER BY makes it slow

querying GIS data

● Without using the spatial extensions
– Although you could.

● Without using stored functions
– Although you could.

● Without using user variables
– Although you could.

● But, heck, it's more fun this way...
– And performs faster in a lot of cases!

GIS data basics

● The world is not flat
– Duh.
– But the MySQL spatial extensions until recently

thought the world was flat
● Spatial extensions prior to MySQL 5.1.something-recent

used Euclidean geometry
● Spherical calculations are different – they use Hadrian

geometry which takes into account the fact that distances
between longitudinal lines converge towards the poles

● GIS calculations are done in radians, not
degrees

radians = degrees * (∏ / 180)

important formulas

● Great circle distance
– Between two points (x1,x2) and (y1,y2)
d = acos (sin(x1) * sin(x2) + cos(x1) * cos(x2) * cos(y2- y1)) * r

– Where r is the radius of the Earth (~3956 miles)
● Haversine formula

– Builds on the GCD formula but adds an additional
conditioning factor in order to make smaller distance
calculations more accurate

d = r * asin (√ (sin ((x2- y2) / 2) ^2 + cos (x1) * sin ((y2 – y1) / 2) ^2) * 2

● Don't need extreme accuracy or don't have high-
accuracy coordinate data? GCD is good enough

common GIS data relationship

CREATE TABLE ZCTA (
 zcta CHAR(5) NOT NULL PRIMARY KEY
, lat_degrees DECIMAL(9,6) NOT NULL
, long_degrees DECIMAL(9,6) NOT NULL
) ENGINE=MyISAM;

CREATE TABLE Store (
 store_id INT UNSIGNED NOT NULL
, zipcode CHAR(5) NOT NULL
, street_address VARCHAR(100) NOT NULL
, PRIMARY KEY (store_id)
, INDEX (zipcode)
) ENGINE=InnoDB;● Data from the US

Census Bureau for zip
code tabulation areas
(ZCTAs)
– Roughly equivalent to

the zip code
– GIS coordinates

provided in degrees
– So we convert to radians

ALTER TABLE ZCTA
ADD COLUMN lat_radians DECIMAL(12,9) NOT NULL
, ADD COLUMN long_radians DECIMAL(12,9) NOT NULL;

UPDATE ZCTA
SET lat_radians= lat_degrees * (PI() / 180)
, long_radians= long_degrees * (PI() / 180);

finding the distance between two points

● So, how far did I travel today?
– Downtown Columbus, Ohio: 43206
– Provo, Utah: 84601

mysql> SELECT ROUND(
 -> ACOS(SIN(orig.lat_radians) * SIN(dest.lat_radians)
 -> + COS(orig.lat_radians) * COS(dest.lat_radians)
 -> * COS(dest.long_radians - orig.long_radians)) * 3956
 -> , 2) AS distance
 -> FROM ZCTA orig, ZCTA dest
 -> WHERE orig.zcta = '43206'
 -> AND dest.zcta = '84601';
+----------+
| distance |
+----------+
| 1509.46 |
+----------+
1 row in set (0.00 sec)

+----+-------------+-------+-------+---------------+---------+---------+-------+------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows |
+----+-------------+-------+-------+---------------+---------+---------+-------+------+
| 1 | SIMPLE | orig | const | PRIMARY | PRIMARY | 6 | const | 1 |
| 1 | SIMPLE | dest | const | PRIMARY | PRIMARY | 6 | const | 1 |
+----+-------------+-------+-------+---------------+---------+---------+-------+------+

radius searches

● Imagine drawing a circle on a piece of paper
using a contractor...

mysql> SELECT orig.zcta, dest.zcta, ROUND(
 -> ACOS(SIN(orig.lat_radians) * SIN(dest.lat_radians)
 -> + COS(orig.lat_radians) * COS(dest.lat_radians)
 -> * COS(dest.long_radians - orig.long_radians)) * 3956
 -> , 2) AS distance
 -> FROM ZCTA orig, ZCTA dest
 -> WHERE orig.zcta = '43206';
<snip>
43206	00976	1801.56
43206	00979	1796.26
43206	00982	1798.26
43206	00983	1798.53
43206	00985	1801.85
43206	00987	1801.48
+-------+-------+----------+
32038 rows in set (0.21 sec)

● Think of the SQL above as a producing a giant
graph that looks like a Koosh® ball

radius searches

● If we remove the WHERE clause from below,
what do we get?

mysql> SELECT orig.zcta, dest.zcta, ROUND(
 -> ACOS(SIN(orig.lat_radians) * SIN(dest.lat_radians)
 -> + COS(orig.lat_radians) * COS(dest.lat_radians)
 -> * COS(dest.long_radians - orig.long_radians)) * 3956
 -> , 2) AS distance
 -> FROM ZCTA orig, ZCTA dest
 -> WHERE orig.zcta = '43206';

● A cartesian product of course...
– But a useful cartesian product of distances between

all points in the US
– Don't try to do this just yet

● 32,038^2 == 1,026,433,444 records

● Can we make use of this result?

radius searches – expanding our distance formula

● Get all zips within 35 miles of “43206”
(Downtown, Columbus, Ohio)

mysql> SELECT
 -> dest.zcta
 -> , ROUND(ACOS(SIN(orig.lat_radians) * SIN(dest.lat_radians)
 -> + COS(orig.lat_radians) * COS(dest.lat_radians)
 -> * COS(dest.long_radians - orig.long_radians)) * 3956, 9) AS "Distance"
 -> FROM ZCTA orig, ZCTA dest
 -> WHERE orig.zcta = '43206'
 -> AND ACOS(SIN(orig.lat_radians) * SIN(dest.lat_radians)
 -> + COS(orig.lat_radians) * COS(dest.lat_radians)
 -> * COS(dest.long_radians - orig.long_radians)) * 3956 <= 35
 -> ORDER BY Distance;
+-------+--------------+
| zcta | Distance |
+-------+--------------+
43206	0.000000000
43205	1.181999017
43215	1.886507824
<snip>	
43149	34.895068055
+-------+--------------+	
108 rows in set (0.10 sec)	
+----+-------------+-------+-------+---------------+---------+---------+-------+-------+----------------+	
id	select_type
+----+-------------+-------+-------+---------------+---------+---------+-------+-------+----------------+	
1	SIMPLE
1	SIMPLE
+----+-------------+-------+-------+---------------+---------+---------+-------+-------+----------------+

tie in radius with our store locations

● Find all HomeDepot stores within 35 miles of me
mysql> SELECT
 -> LEFT(street_address, 30) AS address
 -> , zipcode
 -> , ROUND(ACOS(SIN(orig.lat_radians) * SIN(dest.lat_radians)
 -> + COS(orig.lat_radians) * COS(dest.lat_radians)
 -> * COS(dest.long_radians - orig.long_radians)) * 3956, 9) AS "Distance"
 -> FROM ZCTA orig, ZCTA dest
 -> INNER JOIN Store s
 -> ON dest.zcta = s.zipcode
 -> WHERE orig.zcta = '43206'
 -> AND ACOS(SIN(orig.lat_radians) * SIN(dest.lat_radians)
 -> + COS(orig.lat_radians) * COS(dest.lat_radians)
 -> * COS(dest.long_radians - orig.long_radians)) * 3956 <= 35
 -> ORDER BY Distance;
+--------------------------------+---------+--------------+
| address | zipcode | Distance |
+--------------------------------+---------+--------------+
Grove City #6954 - 1680 String	43123	6.611091045
West Broad #3819 100 South Gr	43228	7.554534005
East Columbus #3828 5200 Hami	43230	8.524457137
Cleveland Ave #3811 6333 Clev	43229	9.726193043
Hilliard #3872 4101 Trueman B	43026	10.304498469
Canal Winchester #3885 6035 G	43110	11.039675381
Sawmill #3831 5858 Sawmill Rd	43017	13.764803511
Westerville #3825 6017 Maxtow	43082	14.534428656
Orange Township #3836 8704 Ow	43065	15.554864931
Marysville #3889 880 Colemans	43040	29.522885252
Newark #3887 1330 N 21st Stre	43055	32.063414509
+--------------------------------+---------+--------------+
11 rows in set (0.00 sec)

