Join-fu: The Art of SQL

Jay Pipes

Community Relations Manager
MySQL

jay@mysqgl.com
http://jpipes.com

_ These slides released under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
j -

mailto:jay@mysql.com
http://jpipes.com/

g intermediate join-fu

Practical examples, but meant to show techniques
of SQL problem solving

* Handling hierarchical queries
- Adjacency lists
- Nested sets
* Exploring GIS calculations in SQL

- Distance between two points

- Points within a given radius
* Reporting query techniques

- Running sums and aggregates
- Ranking return results

J a yord about fear...

Don't be afraid of SQL.

Remember...
SQL is your friend.

FEAR

It'll make vou shit vour pants.

£ ggerying hierarchical structures
ﬁl ;F.".I.

* Graphs and trees don't fit the relational model
well

« Common solutions tend to use either of two
techniques

- Recursion (yuck.)

- Application layer coding (ok.)

* A good solution blends two common tree-storage
models

- Adjacency list
- Nested sets

J ngjacency list model

* Very common but doesn't
scale

. E t f . CREATE TABLE People (
erson id INT UNSIGNED NOT NULL
asy O query or. , ﬁar;e VI_\I12CHAR(50) NOT NULL
, parent INT UNSIGNED NULL
PRIMARY KEY (person id)

- Who is my parent? ' INDEX (parent)

ENGINE=InnoDB;

- Who are my children?

» Difficult to query for: —————

S S

+

1 | Great grandfather
2 | Grandfather
3 | Great Uncle

| NULL |
I

I

| 4 | Father

I

I

I

- How many levels are in my
tree?

5 | Uncle
6 | Me
7 | Brother

- Who are ALL the descendants e .
of my grandfather's brother?

———

-------- +

1
1
2
2
4
4

@& wggjacency list model - easy stuff

0 :, mysql> SELECT p2.*
(] Wh my p t -> FROM People pl
O]S aren ® -> INNER JOIN People p2
-> ON pl.parent = p2.person_id
-> WHERE pl.person id = 6;

B Fom - - tommmm - - +
| person id | name | parent |

mysql> SELECT p.*
-> FROM People p

° Who are my -> WHERE p.parent
father's children?

SELECT p3.*
FROM People pl

-> INNER JOIN People p2
~ Who are my ON p1.personf(i)g S Sz.parent

INNER JOIN People p3

father's father's 3 N P2 person_id - p3.garent
grandchildren?

@@ ma_gjacency list model - hard stuff

 How many levels
in my hierarchy?

- Told you. Yuck.

* Find all
descendants of a
specific person

- Double yuck.

* Basic join-fu how
not to do SQL?

- Avoid cursors,
iterators, etc

DELIMITER //
CREATE PROCEDURE get max levels()
BEGIN
SET @lowest parent :=
(SELECT MAX(parent) FROM People WHERE parent IS NOT NULL);
SET @levels := 1;

SET @current parent = @lowest parent;

WHILE @current_parent IS NOT NULL DO
SET @current parent :=
(SELECT parent FROM People WHERE person_id = @current_parent);
SET @levels := @levels + 1;
END WHILE;

SELECT @levels;
END //

DELIMITER //

CREATE PROCEDURE get node descendants(IN to find INT)
BEGIN

DROP TEMPORARY TABLE IF EXISTS child ids;

CREATE TEMPORARY TABLE child ids (child id INT UNSIGNED NOT NULL);

WHILE @last count children > @new count children DO

INSERT INTO child ids

SELECT person id FROM new children WHERE blah blah...;

SET @new count children := (SELECT COUNT(*) FROM child ids);
END WHILE;

SELECT p.* FROM People
INNER JOIN child ids
ON person id = child id;

END //

q& rgre)sted sets model

 Unhcommon because it is
hard to grasp at first, but it
really Scales CREATE TABLE People (

person id INT UNSIGNED NOT NULL
, hame VARCHAR(50) NOT NULL
, left_side INT UNSIGNED NOT NULL
¢ EaSy tO query fOI’: , right side INT UNSIGNED NOT NULL
, PRIMARY KEY (person id)
, INDEX (parent)

- How many levels are in my e L ED

tree? mysql> SELECT * FROM People;
Fomme - B e

+

| person _id | name

- Who are ALL the descendants |t
of my grandfather's brother?

I

| 2 | Grandfather
| 3 | Great Uncle
| 4 | Father

| 5 | Uncle

I
I

6 | Me
7 | Brother

- Various complex queries that |- E—
would be impossible for the IEECEIESREIED
adjacency list model

£ wted sets model
A gl

e Each node in tree stores info about its location

- Each node stores a “left” and a “right”

* For the root node, “left” is always 1, “right” is always
2*n, where n is the number of nodes in the tree

 For all other nodes, “right” is always equal to the “left” +
(2*n) + 1, where n is the total number of child nodes of
this node

- So...all “leaf” nodes in a tree have a “right” = “left” + 1
- Allows SQL to “walk” the tree's nodes

* OK, got all that? :)

‘5@ nlle_‘sted sets model

4
4 - 6 =
N 4) 4

* For the root node, “left” is always 1, ” is always
2*n, where n is the number of nodes in the tree

* For all other nodes, “ ” is always equal to the
“left” + (2*n) + 1, where n is the total number of child
nodes of this node

m@ so, how is this easier?

» Easy to query for:
- How many levels are in my tree?

- Who are ALL the descendants of my grandfather’s
brother?

- Various complex queries that would be impossible for
the adjacency list model

» Efficient processing via set-based logic
- Versus inefficient iterative/recursive model

» Basic operation is a BETWEEN predicate in a self
join condition

- Hey, you said you wanted advanced stuff...

‘5@ wlle_‘sted list model - sets, not procedures...

* What is the depth
of each node?

— Notice the

BETWEEN
predicate in use

* What about the
EXPLAIN output?

- Oops
- Add an index...

mysql> SELECT pl.person id, pl.name, COUNT(*) AS level
-> FROM People pl
-> INNER JOIN People p2
-> ON pl.left side BETWEEN p2.left side AND p2.right side
-> GROUP BY pl.person id;

=
| person id

+
1
1

Great grandfather
Grandfather

Great Uncle
Father

Uncle

Me

Brother

NoOoU ks WN =
e o e e e e

+
1

3k 5k 3k 3k 3k 3k 5k ok >k >k 3k >k ok 5k >k >k >k ki ok k >k >k >k ki k k ko 1. row 3k 5k 3k 3k >k >k 3k 5k 3k >k >k >k 5k 5k 3k >k >k >k >k 5k 5k >k >k ko ki >k ok
id: 1
select type: SIMPLE
table:
type:
rows:
Extra: Using temporary; Using filesort
eseRiesRseRIceiciRccicieceeke 9= row 3k 3k 3k 3k 3K 3K 3K 5K 5k 5k 3k 3k >k >k 3k 3k ok 3K 3k 5k ok >k >k >k >k kK
id: 1
select type: SIMPLE
table:
type:
rows:

Extra: Using where

ALTER TABLE People ADD UNIQUE INDEX ix_nsm (left_side, right_side);

J 7»1:1"|g,d the max depth of the whole tree

* How do | find the max depth of the tree?

- If the last query shows the depth of each
node...then we build on the last query

mysql> SELECT MAX(level) AS max_level FROM (
-> SELECT pl.person id, COUNT(*) AS level
-> FROM People pl
-> INNER JOIN People p2
-> ON pl.left side BETWEEN p2.left side AND p2.right side

-> GROUP BY pl.person id
->) AS derived;
EEE +
| max level |

1 row in set (0.00 sec)

» Use this technique when solving set-based
problems

- Build on a known correct set and then intersect,
union, aggregate, etc against that set

mysql> EXPLAIN SELECT MAX(level) AS max_ level FROM (
-> SELECT pl.person_id, COUNT(*) AS level
-> FROM People pl
-> INNER JOIN People p2
-> ON pl.left side BETWEEN p2.left side AND p2.right side

-> GROUP BY pl.person_id

->) AS derived\G

ekokkokokoskoko ko kokok kol kok kokkskokskokokkok] poyy kKRR ROk ROk Rk kR ok ok kok kookok kok kok ok ok

id:

select type:
table:

type:

rows:

1

PRIMARY
<derived2>
ALL

7

3k >k >k >k >k >k 5K 5Kk 5k 5k 5k >k >k >k >k >k >k >k 5k 5k 5k >k >k >k >k %k >k

id:

select type:
table:

type:

possible keys:
key:

key len:

rows:

Extra:

3k 5k 3k 3k 3k 3k 5k 5k 3k 3k >k 3k 5k 5K 3k >k >k 3k k ok >k >k >k 3k >k >k >k 3.
id:

select type:
table:

type:

possible keys:
key:

key len:

rows:

Extra:

2

DERIVED

pl

index
ix_nsm
ix_nsm

8

7

Using index;

2

DERIVED

p2

index
ix_nsm
ix_nsm

8

7

Using where;

2. rOw KoRRRRSRkok Kok kokook ok oke ok ok ok >k ok sk kok >k ok ok >k

Using temporary; Using filesort
row 3k 3k 3k 3k 3k 3k 3k 5k 5k >k >k 3k 3k 5k 3k >k >k >k 3k 5k ok 3k >k >k >k 5k 5k

Using index

e Using covering
indexes for
everything

- “Using index”

* Unfortunately,
we've got a
filesort

EXPLAIN SELECT MAX(level) AS max_ level FROM (

SELECT pl.person_id, COUNT(*) AS level

FROM People pl

INNER JOIN People p2

ON pl.left side BETWEEN p2.left side AND p2.right side
GROUP BY pl.person_ id

ORDER BY NULL

) AS derived\G

ARARERARARASARERERARASARARARERASARARARARARIRARARARARAE T [F(ONy] BPRARERAR AR RA RSN KA RS KA RSN R RS KA RS RE R KA RE R BB R

id:

select type:
table:

type:

rows:

1

PRIMARY
<derived2>
ALL

7

3k >k >k >k >k >k 5K 5Kk 5k 5k 5k >k >k >k >k >k >k >k 5Kk 5k 5k >k >k >k >k %k >k

id:

select type:
table:

type:

possible keys:
key:

key len:

rows:

Extra:

Sk 5k 3k 3k 3k 3k 5k 5k 3k 3k >k >k 5k 5k >k >k >k >k 5k ok >k >k >k >k k >k >k 3.
id:

select type:
table:

type:
possible_keys:
key:

key len:

rows:

Extra:

2

DERIVED

pl

index
ix_nsm
ix_nsm

8

7

Using index;

2

DERIVED

p2

index
ix_nsm
ix_nsm

8

7

Using where;

2. rOw KoRRRRKk Kok ok oko ok ok ko ok sk ok Kok koK ok >k ok ok >k

Using temporary;
row 3k 3k 3k 3k >k 3k 3k 5k 5k 3k >k 3k 3k 5k 3k >k >k 3k 3k 5k 5k >k >k >k >k 5k 5k

Using index

« GROUP BY
implicitly orders
the results

* |f you don't need
that sort, remove
it 1t using ORDER
BY NULL

* Who are ALL my

grandfather’'s descendants?

- Remember the nasty recursive

solution we had?

SELECT pl.name

FROM People pl

INNER JOIN People p2

ON pl.left side

BETWEEN p2.left side AND p2.right side
WHERE p2.person id = @to find

AND pl.person id <> @to find;

rows in set (0.00 sec)

mysql> EXPLAIN SELECT pl.name
-> FROM People pl
-> INNER JOIN People p2
-> ON pl.left side BETWEEN p2.left side AND p2.right side
-> WHERE p2.person_id = @to_find

-> AND pl.person_id <> @to_find\G
3k >k >k >k >k >k 5K >k 5k 5k 5k 5k >k >k >k >k >k >k 5k 5k 5k >k >k %k >k >k %k 1. row >k >k >k >k >k 5Kk 5k 5k 5k 5k >k >k >k >k >k >k 5k 5k 5k 5k >k >k >k >k >k >k >k

id:

select type:
table:

type:
possible_keys:
key:

key len:
ref:

rows:
ARERERARERARARIZERE RARARARARERASARARERERARARARARERERAR)

id:

select type:
table:

type:
possible_keys:
key:

key len:

rows:

Extra:

1

SIMPLE

p2

const
PRIMARY,ix_nsm
PRIMARY

4

const

1

1

SIMPLE

pl

range
PRIMARY,ix_nsm
PRIMARY

4

4

Using where

FOW KR RKRAKOR K Kok Kook Kok ok ook ok sk ok ok >k sk ok >k ok

deing all nodes above a specific node

* Who are ALL my
grandfather's predecessors?

mysql> SELECT p2.name

* Look familiar to the last > TONER, SoINCPhapte p2

-> ON pl.left side
uer 7 -> BETWEEN p2.left side AND p2.right side
¢ -> WHERE pl.person id = @to find

-> AND p2.person id <> @to find;

- What has changed?

1 row in set (0.00 sec)

SELECT p2.name

e What about now? [S

INNER JOIN People p2

ON pl.left side

BETWEEN p2.left side AND p2.right side
WHERE pl.person id = @to find

AND p2.person id <> @to find;

m@ﬁynmarizing trees and graphs

* Lots more we could do with trees

— How to insert/delete/move a node in the tree

- How to connect the tree to aggregate reporting
results

- But not right now...
e Best practice

- Use both adjacency list and nested sets for various
query types
e Little storage overhead
* Best of both worlds

m@ reporting techniques

* Running aggregates

— Without user variables

- Running sums and averages
* Ranking of results

— Using user variables
— Using JOINs!

m@ nllj_pning aggregates

* When we want to have a column which “runs” a
sum during the result set

SELECT

MONTHNAME (created) AS Month
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created);
Fommm - - +---mmm- +

Month | Added |

January January
February - February

March (March
April

rows in set (0.00 sec) rows in set (0.00 sec)

ﬁ@plgg‘sic formula for running aggregates

SELECT
x1.key
, X1.some column
, AGGREGATE FN(x2.some column) AS running aggregate
FROM x AS x1
INNER JOIN x AS x2

ON x1l.key >= x2.key
GROUP BY x1.key;

* Join a set (table) to itself using a >= predicate
- ON x1.key >= x2.key

* Problem, though, when we are working with
pre-aggregated data

— Obviously, you can't do two GROUP BYs...

m@ replacing sets in the running aggregate formula

SELECT

x1.key
, X1.some column
, AGGREGATE_FN(x2.some_column)
FROM x AS x1
INNER JOIN x AS x2
ON x1l.key >= x2.key
GROUP BY x1.key;

 Stick to the formula,
but replace sets x1 and
x2 with your pre-
aggregated sets as
derived tables

- The right shows
replacing x with derived

SELECT

FROM (
SELECT
MONTH(created) AS MonthNo
, MONTHNAME (created) AS MonthName
, COUNT(*) AS Added

FROM feeds
WHERE created >= '2007-01-01"
GROUP BY MONTH(created)
) AS x1
INNER JOIN (
SELECT
MONTH(created) AS MonthNo
, MONTHNAME (created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01"
GROUP BY MONTH(created)
) AS x2

m@ﬁﬁgally, replace SELECT, ON and outer GROUP BY

» Replace the greyed-out area with the correct

fields

SELECT

FROM (
SELECT
MONTH(created) AS MonthNo
, MONTHNAME (created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01"
GROUP BY MONTH(created)
) AS x1
INNER JOIN (
SELECT
MONTH(created) AS MonthNo
, MONTHNAME (created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01"
GROUP BY MONTH(created)
) AS x2

SELECT
x1.MonthNo
, X1.MonthName
, x1.Added
, SUM(x2.Added) AS RunningTotal
FROM (
SELECT
MONTH(created) AS MonthNo
, MONTHNAME (created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created)
) AS x1
INNER JOIN (
SELECT
MONTH(created) AS MonthNo
, MONTHNAME (created) AS MonthName
, COUNT(*) AS Added
FROM feeds
WHERE created >= '2007-01-01'
GROUP BY MONTH(created)
) AS x2
ON x1.MonthNo >= x2.MonthNo
GROUP BY x1.MonthNo;

m@}gg‘d the running results...

e R --mmm - R +
| MonthNo | MonthName | Added | RunningTotal |

January
February
March
April

I
I
I
|
I
|
+
6 rows in set (0.00 sec)

* Easy enough to add running averages
- Simply add a column for AVG(x2.Added)

* Lesson to learn: stick to a known formula, then
replace formula elements with known sets of
data (Keep it simple!)

m@ mr;a_pking of results

» Using user variables

— We set a @rank user variable and increment it for
each returned result

* Very easy to do in both SQL and in your
programming language code

- But, in SQL, you can use that produced set to join
with other results...

@@ ranking with user variables

mysql> SET @rank = 0;
e Easy enough Query OK, 0 rows affected (0.00 sec)

mysql> SELECT film id, LEFT(title, 30) as title
-> , rental rate, (@rank:= @rank + 1) as rank

- But what about ties in e entt_rae s
the ranking? O s S R P
| film id | title rental rate | rank |
e Notice that some of R P e
| FLASH WARS

| VELVET TERMINATOR

the films have | VAMPRE WHALE

| DOUBTFIRE LABYRINTH
| DRIFTER COMMANDMENTS

identical prices, and | PUILAGEL P i
so should be tied...

| DEEP CRUSADE

- Go ahead and try to
produce a clean way of
dealing with ties using
user variables...

m@_@king with SQL - the formula

. . SELECT
Again, we use a formula 21.key field

to compute ranked , x1.other_field
, COUNT(*) AS rank
results FROM x AS x1

INNER JOIN x AS x2

. TeChnique: use a known GRg”Pxé{(rank_field <= x2.rank field

formulaic solution and x1.key field

ORDER BY
replace formula values ESHCIINRSTICEMo

with known result sets

e The formula takes ties
into account with the >=
predicate in the join
condition

J replace variables in the formula

SELECT SELECT
x1l.key field x1.film id
, Xl.other field , x1.title
, COUNT(*) AS rank , X1l.rental rate
FROM x AS x1 , COUNT(*) AS rank
INNER JOIN x AS x2 FROM film AS x1
ON x1.rank field <= x2.rank field INNER JOIN film AS x2

GROUP BY ON xl.rental rate <= x2.rental_rate
x1l.key field GROUP BY

ORDER BY ¢ x1.film_id

x1l.rank field DESCC ORDER BY

LIMIT 10; x1.rental_rate DESC

LIMIT 10;

® T]eS are nOW Trental_rate
+
DOORS PRESIDENT
accounted for o
VELVET TERMINATOR |
° E t b Skﬁﬁ?aﬁmﬁﬁm I
aSy O gra d DOUBTFIRE LABYRINTH |
oo o ” PHILADELPHIA WIFE
W'IndOW Of the DRIFTER COMMANDMENTS I
WASH HEAVENLY |
: DEEP CRUSADE
rankings !

- Just change LIMIT
and OFFSET

J refining the performance...

 EXPLAIN produces:

e +------ oo - +------ +------ e +
| id | select type | table | type | possible keys | key | key len | ref | rows | Extra

| x2 | ALL | PRIMARY | NULL | NULL | NULL | 952 | Using temporary; Using filesort |
| x1 | ALL | PRIMARY | NULL | NULL | NULL | 952 | Using where

* And the query ran in (that's bad, mkay...)

* No indexes being used

- We add an index on film (film id, rental rate)

| index | ix film id | ix film id rate | NULL | 967 | Using index; Using temporary; Using filesort
| ALL | ix rate film id | NULL | NULL | 967 | Using where |

e Results: slightly better performance of
- But, different GROUP and ORDER BY makes it slow

@g._;erying GIS data

* Without using the spatial extensions
- Although you could.

* Without using stored functions
- Although you could.

» Without using user variables
- Although you could.

* But, heck, it's more fun this way...

- And performs faster in a lot of cases!

@ $ data basics
A

 The world is not flat

— Duh.

- But the MySQL spatial extensions until recently
thought the world was flat

 Spatial extensions prior to MySQL 5.1.something-recent
used Euclidean geometry

 Spherical calculations are different - they use Hadrian
geometry which takes into account the fact that distances
between longitudinal lines converge towards the poles

* GIS calculations are done in radians, not
degrees

radians = degrees * (IT / 180)

J 7Wimportant formulas

» Great circle distance
- Between two points (x1,x2) and (y1,y2)

d = acos (sin(x7) * sin(x2) + cos(x1) * cos(x2) * cos(y2- y1)) *r
- Where r is the radius of the Earth (~3956 miles)
» Haversine formula

— Builds on the GCD formula but adds an additional
conditioning factor in order to make smaller distance
calculations more accurate

d=r*asin (/ (sin ((x2-y2) / 2) "2 + cos (x1) *sin ((y2-y1)/ 2) "2)* 2

* Don't need extreme accuracy or don't have high-
accuracy coordinate data? GCD is good enough

Jmmon GIS data relationship

CREATE TABLE ZCTA (
zcta CHAR(5) NOT NULL PRIMARY KEY

CREATE TABLE St
, lat degrees DECIMAL(9,6) NOT NULL ore |

store_id INT UNSIGNED NOT NULL
, zipcode CHAR(5) NOT NULL

, long degrees DECIMAL(9,6) NOT NULL
) ENGINE=MyISAM;

, Street address VARCHAR(100) NOT NULL
, PRIMARY KEY (store id)
, INDEX (zipcode)

» Data from the US) ENGINE=TnnoDE;
Census Bureau for zip

code tabulation areas
(ZCTAs)

— ROUghly eqUivalent to ALTER TABLE ZCTA

1 ADD COLUMN lat radians DECIMAL(12,9) NOT NULL
the Z]p COde , ADD COLUMN long radians DECIMAL(12,9) NOT NULL;

UPDATE ZCTA

- GIS Coordinates SET lat radians= lat degrees * (PI() / 180)

, long radians= long degrees * (PI() / 180);

provided in degrees
- So we convert to radians

w‘.ﬂ@ nﬁgding the distance between two points

* S0, how far did | travel today?

- Downtown Columbus, Ohio: 43206
- Provo, Utah: 84601

mysql> SELECT ROUND (
-> ACOS(SIN(orig.lat_radians) * SIN(dest.lat_radians)
-> + C0S(orig.lat_radians) * COS(dest.lat_radians)
-> * C0S(dest.long_radians - orig.long_radians)) * 3956
-> , 2) AS distance
-> FROM ZCTA orig, ZCTA dest
-> WHERE orig.zcta = '43206'
-> AND dest.zcta = '84601';

1 row in set (0.00 sec)

R s I R R R Fo-mmme - Fo-mmme - R +------ +
| id | select type | table | type | possible keys | key | key len | ref
Rk I +--mm - +--mm - I Fommmmm - Fommmmm - +--mm - +------ +
1 | SIMPLE | orig | const | PRIMARY | PRIMARY | 6 | const |
1 | SIMPLE | dest | const | PRIMARY | PRIMARY | 6 | const |
Rk e +o-mm - - +o-mm - - R Fomm e - Fomm e - +--mm - - +---- - +

a radius searches

* Imagine drawing a circle on a piece of paper
using a contractor...

mysql> SELECT orig.zcta, dest.zcta, ROUND(
-> ACOS(SIN(orig.lat_radians) * SIN(dest.lat_radians)
-> + C0S(orig.lat_radians) * COS(dest.lat_radians)
-> * COS(dest.long_radians - orig.long_radians)) * 3956
-> , 2) AS distance
-> FROM ZCTA orig, ZCTA dest
-> WHERE orig.zcta = '43206°';

<snip>

| 43206 | 00976 1801.56 |

43206	00979	1796.26
43206	00982	1798.26
43206	00983	1798.53
43206	00985	1801.85
43206	00987	1801.48

* Think of the SQL above as a produciﬁ-éua giant
graph that looks like a Koosh® ball

@@ radius searches

* |f we remove the WHERE clause from below,
what do we get?

mysql> SELECT orig.zcta, dest.zcta, ROUND(

-> ACOS(SIN(orig.lat radians) * SIN(dest.lat radians)
-> + C0S(orig.lat radians) * COS(dest.lat radians)

-> * (C0S(dest.long radians - orig.long radians)) * 3956
-> , 2) AS distance

-> FROM ZCTA orig, ZCTA dest

-> WHERE orig.zcta = '43206';

» A cartesian product of course...

- But a useful cartesian product of distances between
all points in the US

- Don't try to do this just yet
e 32,038"2 == 1,026,433,444 records

« Can we make use of this result?

» radius searches - expanding our distance formula

* Get all zips within 35 miles of “43206”
(Downtown, Columbus, Ohio)

SELECT
dest.zcta

, ROUND(ACOS(SIN(orig.lat radians) * SIN(dest.lat radians)

+ COS(orig.lat radians) * COS(dest.lat radians)

* COS(dest.long radians - orig.long radians)) * 3956, 9) AS "Distance"
-> FROM ZCTA orig, ZCTA dest

WHERE orig.zcta = '43206'
-> AND ACOS(SIN(orig.lat_radians) * SIN(dest.lat_radians)
-> + C0S(orig.lat_radians) * COS(dest.lat_radians)
-> * CO0S(dest.long radians - orig.long radians)) * 3956 <= 35
-> ORDER BY Distance;

| 43206 0.000000000 |

| 43205 1.181999017 |

| 43215 1.886507824 |

<snip>

| 43149 | 34.895068055 |

+------- R +

108 rows in set (0.10 sec)

L T +------- +------- Fom e +--mm e - - +--mm e e - +----- - +----- - e +
| id | select type | table | type | possible keys | key | key len | ref | rows | Extra

Rk (I +--m - - +--m - - R R R +--mm - - +--mm - - R +
| 1 | SIMPLE | orig | const | PRIMARY | PRIMARY | 6 | const | 1 | Using filesort |
| 1 | SIMPLE | dest | ALL | NULL | NULL | NULL | NULL | 32038 | Using where |
Rk R R Fom e R R R +--mm - - R +

» tie in radius with our store locations

* Find all HomeDepot stores within 35 miles of me

mysql> SELECT
-> LEFT(street_address, 30) AS address
-> , zipcode
-> , ROUND(ACOS(SIN(orig.lat radians) * SIN(dest.lat radians)
-> + C0S(orig.lat radians) * COS(dest.lat radians)
* COS(dest.long radians - orig.long radians)) * 3956, 9) AS "Distance"
FROM ZCTA orig, ZCTA dest
INNER JOIN Store s
ON dest.zcta = s.zipcode
WHERE orig.zcta = '43206'
AND ACOS(SIN(orig.lat radians) * SIN(dest.lat radians)
+ COS(orig.lat radians) * COS(dest.lat radians)
* COS(dest.long radians - orig.long radians)) * 3956 <= 35
ORDER BY Distance;

Grove City #6954 - 1680 String
West Broad #3819 100 South Gr
East Columbus #3828 5200 Hami
Cleveland Ave #3811 6333 Clev
Hilliard #3872 4101 Trueman B
Canal Winchester #3885 6035 G
Sawmill #3831 5858 Sawmill Rd
Westerville #3825 6017 Maxtow
Orange Township #3836 8704 Ow
Marysville #3889 880 Colemans
Newark #3887 1330 N 21st Stre

11 rows in set (0.00 sec)

.611091045
.554534005
.524457137
.726193043
. 304498469
.039675381
. 764803511
.534428656
.554864931
522885252
.063414509

