
OpenStack QA
Walkthrough of Tools, Code and Processes

Most Important Things to Remember

● Participate
○ The more you participate, the more people you meet

and the more knowledge you gain
○ The more knowledge you gain, the more you can

share that knowledge with others
● Ask questions

○ Don't be afraid to ask questions
○ There's no such thing as a stupid or silly question

● Be public
○ Prefer public questions and discussion over private

email threads
○ Cast a wide net, catch more fish

Things all contributors should have

● Launchpad account
○ Upload your SSH keys to Launchpad
○ Gerrit imports your SSH keys from Launchpad
○ Subscribe to main openstack mailing list

● IRC
○ freenode.net #openstack and #openstack-dev
○ Typically 340+ on #openstack, 140+ on #openstack-

dev
○ Best place to find help
○ #openstack-meeting for weekly meetings

■ Wednesdays at 16:00 UTC
● devstack installed locally

Running with devstack

● Always run your test code against a real
system

● devstack makes things easy for you
● Running stack.sh "resets" a development

OpenStack environment for you
● Point tests like Tempest at your local

devstack environment
● Great for one-off tests or monkey-testing

$> ./stack.sh
<snip lots of output!>
horizon is now available at http://127.0.0.1/
keystone is serving at http://127.0.0.1:5000/v2.0/
examples on using novaclient command line is in exercise.sh
the default users are: admin and demo
the password: 4f9a953e98ee57d922d9
This is your host ip: 127.0.0.1
stack.sh completed in 79 seconds.

Running devstack (stack.sh)

Tempest

● Tempest is a project that contains functional
integration tests intended to be run against
actual OpenStack deployments

● Contains a functional testing framework that
uses the unittest2 and nose Python
libraries as a base

● Test cases execute a series of API calls
against OpenStack service endpoints and
validate the response from the endpoint

● Uses a simple config file that describes test
environment

jpipes@librebox:~/repos/tempest$./tempest/tools/conf_from_devstack -D ../devstack/ -o etc/tempest.
conf
Output file already exists. Overwrite? [y/N]Y
jpipes@librebox:~/repos/tempest$ cat etc/tempest.conf
[nova]
host=127.0.0.1
port=5000
apiVer=v2.0
path=tokens
user=admin
api_key=4f9a953e98ee57d922d9
tenant_name=admin
ssh_timeout=300
build_interval=10
build_timeout=600

[environment]
image_ref=3712ca26-f926-4725-9132-08ec1f6e452e
image_ref_alt=4
flavor_ref=1
flavor_ref_alt=2
create_image_enabled=true
resize_available=true

Easy way to generate a test config

Bolded values
were gathered
from the devstack
configuration

Running Tempest

jpipes@librebox:~/repos/tempest$ nosetests -v tempest
List of all extensions ... ok
<snip>

--
Ran 61 tests in 2283.166s

FAILED (SKIP=2, errors=5)

jpipes@librebox:~/repos/tempest$ nosetests -v tempest.tests.test_flavors
The expected flavor details should be returned ... ok
flavor details are not returned for non existant flavors ... ok
List of all flavors should contain the expected flavor ... ok
Detailed list of all flavors should contain the expected flavor ... ok

--
Ran 4 tests in 0.722s

OK

Run Tempest with nosetests

jpipes@librebox:~/repos/tempest$ nosetests -v tempest.tests.test_flavors:
FlavorsTest.test_list_flavors
List of all flavors should contain the expected flavor ... ok

--
Ran 1 test in 0.502s

OK

Running a single test case...

Top tip: Separate test module from test
class with colon, not dot!

==
ERROR: The server should be rebuilt using the provided image and data
--
Traceback (most recent call last):
 File "/home/jpipes/repos/tempest/tempest/tests/test_server_actions.py", line 79, in test_rebuild_server

self.client.wait_for_server_status(rebuilt_server['id'], 'ACTIVE')
 File "/home/jpipes/repos/tempest/tempest/services/nova/json/servers_client.py", line 150, in wait_for_server_status

raise exceptions.TimeoutException(message)
TimeoutException: Request timed out
Details: Server 8bd71a0c-64d7-4ffc-aeb0-227bf4bbb80c failed to reach ACTIVE status within the required time (600.0 s).

What errors look like...

jpipes@librebox:~/repos/tempest$ nosetests -v --with-xunit tempest.tests.test_server_actions
The server's password should be set to the provided password ... ok
The server should be power cycled ... ok
The server should be signaled to reboot gracefully ... ok
The server should be rebuilt using the provided image and data ... ERROR
The server's RAM and disk space should be modified to that of ... ERROR
The server's RAM and disk space should return to its original ... ERROR
<snip>

==
ERROR: The server's RAM and disk space should return to its original
--
Traceback (most recent call last):
 File "/home/jpipes/repos/tempest/tempest/tests/test_server_actions.py", line 112, in test_resize_server_revert

self.client.wait_for_server_status(self.server_id, 'VERIFY_RESIZE')
 File "/home/jpipes/repos/tempest/tempest/services/nova/json/servers_client.py", line 150, in
wait_for_server_status

raise exceptions.TimeoutException(message)
TimeoutException: u'Server d7f1d3e3-1d3a-4c22-b3ef-1fe6660fe0b5 failed to reach ACTIVE status within the

required time (600.0 s).'

--
XML: nosetests.xml
--
Ran 6 tests in 1918.131s

FAILED (errors=3)
jpipes@librebox:~/repos/tempest$ cat nosetests.xml

Machine-readable output with xUnit

<?xml version="1.0" encoding="UTF-8"?>
<testsuite name="nosetests" tests="6" errors="3" failures="0" skip="0">
 <testcase classname="tempest.tests.test_server_actions.ServerActionsTest" name="test_change_server_password" time="22" />
 <testcase classname="tempest.tests.test_server_actions.ServerActionsTest" name="test_reboot_server_hard" time="22" />
 <testcase classname="tempest.tests.test_server_actions.ServerActionsTest" name="test_reboot_server_soft" time="22" />
 <testcase classname="tempest.tests.test_server_actions.ServerActionsTest" name="test_rebuild_server" time="617">
 <error type="tempest.exceptions.TimeoutException" message="u'Server ac4a2f89-f905-42e5-ba14-801a3146cf9c failed to reach ACTIVE status
within the required time (600.0 s).'">
 <![CDATA[Traceback (most recent call last):
 File "/usr/lib/pymodules/python2.7/unittest2/case.py", line 340, in run

testMethod()
 File "/home/jpipes/repos/tempest/tempest/tests/test_server_actions.py", line 79, in test_rebuild_server

self.client.wait_for_server_status(rebuilt_server['id'], 'ACTIVE')
 File "/home/jpipes/repos/tempest/tempest/services/nova/json/servers_client.py", line 150, in wait_for_server_status

raise exceptions.TimeoutException(message)
TimeoutException: u'Server ac4a2f89-f905-42e5-ba14-801a3146cf9c failed to reach ACTIVE status within the required
time (600.0 s).'
]]>
 </error>
 </testcase>
...
</testsuite>

Tempest Code
Walkthrough

Tempest directory structure
$src_dir/

etc/ <-- contains sample Tempest config
tempest/

common/ <-- common code like rest_client
services/

nova/ <-- client for compute
tests/ <-- test cases
tools/ <-- helpers scripts

Tempest test case class

● Contains a set of related tests
○ For instance, a test case may test operations that list

servers in various ways
● Resources shared by methods of the test

case should be created in the setUpClass()
method and destroyed in the
tearDownClass() method

● setUpClass() method is used to
create resources (in this case a
pair of server instances and a few
snapshot images) that are
referenced by test methods in the
test case

● What's wrong with this picture?
hint: https://bugs.launchpad.
net/tempest/+bug/899701

● Pattern you will see is that instead
of making HTTP calls directly, you
use the various client objects
attached to the tempest.
openstack.Manager

https://bugs.launchpad.net/tempest/+bug/899701
https://bugs.launchpad.net/tempest/+bug/899701

Tempest test case methods

● Test methods should validate a related set of
actions

● Test methods may be decorated with the
nose.plugins.attrib.attr decorator
to indicate that a method contains a
particular type of test

● If a test method creates any resources, it
should always clean up after itself

Tempest test case methods (cont'd)

● Test methods should not modify any shared
resources -- doing so may create ordering
dependencies

● When using various assert methods, include
a corresponding failure message that is
descriptive and provides the tester with
details they may need to diagnose an issue

Example: writing a good test case

Add a test case that does the following:
1. Create a new server from a base image
2. Change the name of the server
3. Validate the new name of the server appears

when showing details about the server

def test_scenario(self):

 name = rand_name('server')

 resp, body = self.client.create_server(name, self.image_ref,

 self.flavor_ref)

 resp, body = self.client.update_server(server['id'], name='newname')

 self.assertEqual(200, resp.status)

 resp, server = self.client.get_server(server['id'])

 self.assertEqual('newname', server['name'])

@attr(type='smoke')

def test_update_server_name(self):

 """The server name should be changed to the the provided value"""

 name = rand_name('server')

 resp, body = self.client.create_server(name, self.image_ref,

 self.flavor_ref)

 resp, body = self.client.update_server(server['id'], name='newname')

 self.assertEqual(200, resp.status)

 resp, server = self.client.get_server(server['id'])

 self.assertEqual('newname', server['name'])

@attr(type='smoke')

def test_update_server_name(self):

 """The server name should be changed to the the provided value"""

 name = rand_name('server')

 resp, server = self.client.create_server(name, self.image_ref,

 self.flavor_ref)

 self.assertEqual(201, resp.status)

 # Update the server with a new name

 resp, body = self.client.update_server(server['id'], name='newname')

 self.assertEqual(200, resp.status)

 # Verify the name of the server has changed

 resp, server = self.client.get_server(server['id'])

 self.assertEqual('newname', server['name'])

@attr(type='smoke')

def test_update_server_name(self):

 """The server name should be changed to the the provided value"""

 name = rand_name('server')

 resp, server = self.client.create_server(name, self.image_ref,

 self.flavor_ref)

 self.assertEqual(201, resp.status)

 server_id = server['id']

 # Update the server with a new name

 resp, body = self.client.update_server(server_id, name='newname')

 resp_code = resp.status

 fail_msg = ("Failed to update server %(server_id)s. "

 "Got HTTP response code %(resp_code)d with "

 "body %(body)s") % locals()

 self.assertEqual(200, resp.status, fail_msg)

 # Verify the name of the server has changed

 resp, server = self.client.get_server(server_id)

 fail_msg = ("Failed to find updated server name. Expected 'newname' "

 "Got %s") % server['name']

 self.assertEqual('newname', server['name'], fail_msg)

@attr(type='smoke')

def test_update_server_name(self):

 """The server name should be changed to the the provided value"""

 name = rand_name('server')

 resp, server = self.client.create_server(name, self.image_ref,

 self.flavor_ref)

 self.assertEqual(201, resp.status)

 server_id = server['id']

 # Update the server with a new name

 resp, body = self.client.update_server(server_id, name='newname')

 resp_code = resp.status

 fail_msg = ("Failed to update server %(server_id)s. "

 "Got HTTP response code %(resp_code)d with "

 "body %(body)s") % locals()

 self.assertEqual(200, resp.status, fail_msg)

 # Verify the name of the server has changed

 resp, server = self.client.get_server(server_id)

 fail_msg = ("Failed to find updated server name. Expected 'newname' "

 "Got %s") % server['name']

 self.assertEqual('newname', server['name'], fail_msg)

 # Clean up after ourselves...

 self.client.delete_server(server['id'])

Submitting Code

Code Submission Guidelines

● Be consistent
○ Consistency in your code -- style, comments,

documentation, etc -- shows you care
● Respond in a timely manner to reviews
● Ensure commit messages are proper

○ A Launchpad bug number or blueprint is referenced
when appropriate

○ First line is short description of patch
○ More detailed description of patch follows
○ Do not put successive "fixup messages" in commit

message

Basic contribution process

1. Assign yourself to an unassigned bug
2. Create local topic branch
3. Make code changes
4. Run Tempest against standing environments
5. If all tests pass, commit code changes
6. Write descriptive commit message
7. Propose for review
8. Address any review comments
9. Amend commit and re-propose

Common Scenarios

Scenario:
You have assigned yourself to a bug,
created or modified code that addresses the
bug, run tests and now want to propose your
changes for review.

Solution:
Commit local changes and then call git

review

Use git-review to propose patch

Basic code submission

1) git commit -a
2) Write a descriptive commit message
3) Save and close your editor
4) git review

Use --amend for small fixups

Scenario:
You have pushed a patch and gotten one or
more reviews that call for some minor fixups.
You make the fixes on your local branch and
need to push the changes for review.

Solution:
Commit local changes, but amend the

original commit.

Amending a commit after fixes

1) git commit -a --amend
2) Optionally edit the commit message
3) Save and close your editor
4) git review

Oops! You forgot to use --amend!

Scenario:
You made fixups based on review and then did a git
commit -a and then git review, but you forgot to
use --amend. This generated a new patchset to Gerrit
instead of updating the original commit.

Solution:
First, take a deep breath and remember that every

contributor has done this before. After that, Abandon the
incorrect new changeset in Gerrit and then use git reset
to undo your mistake.

Undoing your --amend mistake

1) Go to your newly-created Gerrit changeset
and click the "Abandon" button to mark the
changeset as obselete
2) git reset HEAD^
3) git commit -a --amend
4) Optionally edit the commit message to
indicate any major changes you may have
made during fixups
5) git review

jpipes@librebox:~/repos/tempest$ git commit -a # Ooops! Forgot to --amend!
[bug912596 08439dc] Bad Jay!
 1 files changed, 1 insertions(+), 0 deletions(-)
jpipes@librebox:~/repos/tempest$ git reset HEAD^
Unstaged changes after reset:
M tempest/openstack.py
jpipes@librebox:~/repos/tempest$ git commit -a --amend
[bug912596 9e320c0] Fixes LP Bug #912596 - image_ref_alt not found
 Author: Jay Pipes <jpipes@librebox.gateway.2wire.net>
 3 files changed, 89 insertions(+), 1 deletions(-)
 create mode 100644 tempest/tests/utils.py

Use git stash to save changes

Scenario:
You have a bunch of uncommitted code

changes locally. You want to pull code that just
made it into trunk.
Solution:

Use git stash to save your uncommitted
code changes, pull changes from master,
rebase your local branch against master and
then reapply your stashed code changes.

git stash
git checkout master
git pull
git checkout <BRANCH>
git rebase master
git stash pop

Scenario:
You are reviewing a colleague's code and

want to pull the code to your local machine for
testing.
Solution:

Use git review -d <PATCH_NUM> to clone
the remote branch locally and automatically put
you into the branch.

Pull a colleague's code from Gerrit

Here is the patch number...

Troubleshooting

● If stack.sh fails to build and gives errors
about domains failing to be removed,
manually check the status of VMs that may
have been left around after a test run using
virsh list --all

● Manually virsh destroy
<INSTANCE_NAME> and virsh undefine
<INSTANCE_NAME> all instances and try re-
running stack.sh

