
By Jay Pipes
Community Relations Manager, North America
MySQL, Inc.

MySQL PERFORMANCE
CODING:
FROM SOUP TO NUTS

Oct 12, 2007 MySQL Performance Coding
PAGE

2

Who the heck am I?

• Just some dude who
works at MySQL

• Working with PHP and
MySQL for 6+ years

• Oh, I wrote a book, too...
• Other than that, I'm

semi-normal, with wife,
two cats, two dogs, blah,
blah, blah

Oct 12, 2007 MySQL Performance Coding
PAGE

3

A quick survey...

• 3.23? 4.0? 4.1? 5.0? 5.1?
• MyISAM? InnoDB? Archive? Memory?
• Replication? Cluster?
• PHP 4? PHP 5? PHP 6?
• libmysql? Native Driver for MySQL?
• ext/mysql? ext/mysqli? PDO?
• Oracle? PostgreSQL? DB2? MSSQL?

SQLite?

Oct 12, 2007 MySQL Performance Coding
PAGE

4

The big three topics

The Schema

The Code

The Server

Oct 12, 2007 MySQL Performance Coding
PAGE

5

But first, some general stuff...

• Performance != Scalability
• Benchmarking
• Overview of MySQL System Architecture
• Overview of the MySQL Query Cache
• The Scan vs. Seek Choice

Oct 12, 2007 MySQL Performance Coding
PAGE

6

Performance !== Scalability

• Typically, we speak of performance
when we talk about response times
for a web page, an SQL statement,
etc

• Scalability comes up when we talk
about throughput, or the number of
concurrent requests a node can
serve within a certain timeframe
 or the size of the data increases

Oct 12, 2007 MySQL Performance Coding
PAGE

7

Benchmarking

• Very important to benchmark both
performance and scalability
 So, test with multiple concurrency

levels and varying dataset sizes
• Toolbox

 mysqlslap
 Apache Bench (ab)
 sysbench
 Custom

•MyBench, Jmeter/Ant, Shell scripts...

Oct 12, 2007 MySQL Performance Coding
PAGE

8

MySQL system architecture

Clients

Parser

Optimizer

Query
Cache

Pluggable Storage Engine API

MyISAM InnoDB MEMORY Falcon Archive PBXT SolidDB Cluster
(Ndb)

Connection
Handling &

Net I/O

“Packaging”

Oct 12, 2007 MySQL Performance Coding
PAGE

9

MySQL system architecture notes

• Highly coupled subsystems
• Emphasis on connection-based memory

allocation (as opposed to global)
• Caching on many different levels
• Storage engine layer is both blessing and

curse
• Optimizer is cost-based, simplistic, and

must be guarded against
• Efforts to modularize ongoing

Oct 12, 2007 MySQL Performance Coding
PAGE

10

The MySQL query cache

• You must understand application
read/write ratio

• Internal design is a compromise between
CPU usage and read performance

• Bigger query cache != better
performance, even for heavy read
applications

• Not a silver bullet!

Oct 12, 2007 MySQL Performance Coding
PAGE

11

The scan vs. seek choice

• A seek operation, generally speaking, jumps to
a random place -- either on disk or in memory
-- to fetch the data needed.
 Repeat for each piece of data needed from

disk or memory
• A scan operation, on the other hand, will jump to

the start of a chunk of data, and sequentially
read data -- either from disk or from memory --
until the end of the chunk of data
 For large amounts of data, scan operations

tend to be more efficient than multiple seek
operations

Oct 12, 2007 MySQL Performance Coding
PAGE

12

And finally...

• Learn to use EXPLAIN!
• Too big a topic for this session, so download my

workbook and slides from OSCON
• http://jpipes.com/presentations/target-practice

 /target-practice-workbook.pdf
 /target-practice.pdf (or .odp)

Oct 12, 2007 MySQL Performance Coding
PAGE

13

MySQL Performance Coding

The Schema

Oct 12, 2007 MySQL Performance Coding
PAGE

14

Data types

• Smaller, smaller, smaller!
 Do you really need that BIGINT?

• More records in single page of memory,
faster seeks & scans

• AUTO_INCREMENT is a good thing!
 Generates a “hot spot” on disk and in

memory
 Look at 5.1.21 for InnoDB scaling

patch
• Use appropriate data types

Oct 12, 2007 MySQL Performance Coding
PAGE

15

Appropriate data types

• INT UNSIGNED for IP addresses!
• Use VARCHAR carefully

 Converted to CHAR when used in a
temporary table

• Use TEXT sparingly
 Consider separate tables

• Use BLOBs very sparingly
 Use the filesystem for what it was

intended

Oct 12, 2007 MySQL Performance Coding
PAGE

16

IPv4 addresses are INT UNSIGNED

CREATE TABLE Sessions (
 session_id INT UNSIGNED NOT NULL AUTO_INCREMENT
, ip_address INT UNSIGNED NOT NULL // Compared to CHAR(15)!!
, session_data TEXT NOT NULL
, PRIMARY KEY (session_id)
, INDEX (ip_address)
) ENGINE=InnoDB;

// Find all sessions coming from a local subnet
SELECT * FROM Sessions
WHERE ip_address BETWEEN
INET_ATON('192.168.0.1') AND INET_ATON('192.168.0.255');

The INET_ATON() function reduces the string to a constant INT
and a highly optimized range operation will be performed for:

SELECT * FROM Sessions
WHERE ip_address BETWEEN 3232235521 AND 3232235775

Oct 12, 2007 MySQL Performance Coding
PAGE

17

Normalize first, denormalize later. But...

http://thedailywtf.com/forums/thread/75982.aspx

Oct 12, 2007 MySQL Performance Coding
PAGE

18

Partitioning

• Vertical partitioning
 Splits tables with many columns into

multiple tables
• Horizontal partitioning

 Splits table with many rows into
multiple tables

• Both are important for different reasons
• Partitioning in MySQL 5.1 is horizontal

partitioning

Oct 12, 2007 MySQL Performance Coding
PAGE

19

Vertical partioning example

CREATE TABLE Users (
 user_id INT NOT NULL AUTO_INCREMENT
, email VARCHAR(80) NOT NULL
, display_name VARCHAR(50) NOT NULL
, password CHAR(41) NOT NULL
, first_name VARCHAR(25) NOT NULL
, last_name VARCHAR(25) NOT NULL
, address VARCHAR(80) NOT NULL
, city VARCHAR(30) NOT NULL
, province CHAR(2) NOT NULL
, postcode CHAR(7) NOT NULL
, interests TEXT NULL
, bio TEXT NULL
, signature TEXT NULL
, skills TEXT NULL
, PRIMARY KEY (user_id)
, UNIQUE INDEX (email)
) ENGINE=InnoDB;

CREATE TABLE Users (
 user_id INT NOT NULL AUTO_INCREMENT
, email VARCHAR(80) NOT NULL
, display_name VARCHAR(50) NOT NULL
, password CHAR(41) NOT NULL
, PRIMARY KEY (user_id)
, UNIQUE INDEX (email)
) ENGINE=InnoDB;

CREATE TABLE UserExtra (
 user_id INT NOT NULL
, first_name VARCHAR(25) NOT NULL
, last_name VARCHAR(25) NOT NULL
, address VARCHAR(80) NOT NULL
, city VARCHAR(30) NOT NULL
, province CHAR(2) NOT NULL
, postcode CHAR(7) NOT NULL
, interests TEXT NULL
, bio TEXT NULL
, signature TEXT NULL
, skills TEXT NULL
, PRIMARY KEY (user_id)
) ENGINE=InnoDB;

Oct 12, 2007 MySQL Performance Coding
PAGE

20

When vertical partitioning makes sense

• “Extra” columns are mostly NULL
• “Extra” columns are infrequently

accessed
• When space in buffer pool is at a

premium
 Splitting the table allows main records to

consume the buffer pages without the extra
data taking up space in memory

 Many more “main” records can fit into a single
16K InnoDB data page

• Need FULLTEXT on your text columns?

Oct 12, 2007 MySQL Performance Coding
PAGE

21

Vertical partioning example #2

CREATE TABLE Products (
 product_id INT NOT NULL
, name VARCHAR(80) NOT NULL
, unit_cost DECIMAL(7,2) NOT NULL
, description TEXT NULL
, image_path TEXT NULL
, num_views INT UNSIGNED NOT NULL
, num_in_stock INT UNSIGNED NOT NULL
, num_on_order INT UNSIGNED NOT NULL
, PRIMARY KEY (product_id)
, INDEX (name(20))
) ENGINE=InnoDB; // Or MyISAM

// Getting a simple COUNT of products
// easy on MyISAM, terrible on InnoDB
SELECT COUNT(*)
FROM Products;

CREATE TABLE Products (
 product_id INT NOT NULL
, name VARCHAR(80) NOT NULL
, unit_cost DECIMAL(7,2) NOT NULL
, description TEXT NULL
, image_path TEXT NULL
, PRIMARY KEY (product_id)
, INDEX (name(20))
) ENGINE=InnoDB; // Or MyISAM

CREATE TABLE ProductCounts (
 product_id INT NOT NULL
, num_views INT UNSIGNED NOT NULL
, num_in_stock INT UNSIGNED NOT NULL
, num_on_order INT UNSIGNED NOT NULL
, PRIMARY KEY (product_id)
) ENGINE=InnoDB;

CREATE TABLE TableCounts (
 total_products INT UNSIGNED NOT NULL
) ENGINE=MEMORY;

Oct 12, 2007 MySQL Performance Coding
PAGE

22

Vertical partitioning solves more problems

• Mixing static attributes with frequently
updated fields in a single table?
 Thrashing occurs with query cache. Each time

an update occurs on any record in the table,
all queries referencing the table are
invalidated in the Query Cache

• Doing COUNT(*) with no WHERE on an
indexed field on an InnoDB table?
 Complications with versioning make full table

counts very slow

Oct 12, 2007 MySQL Performance Coding
PAGE

23

Horizontal partitioning options

• Eli covered this well yesterday
 (Thanks so much, Eli, I deleted four slides

from my talk about it.)

• MySQL 5.1 Partitioning
 (Will be) good for taking

advantage of multiple disks
• Custom partitioning (sharding)

 Currently, the way to go

Oct 12, 2007 MySQL Performance Coding
PAGE

24

Indexes

• Speed up SELECTs, but slow down
modifications

• Ensure indexes on columns used in
WHERE, ON, GROUP BY clauses

• Always ensure JOIN conditions are
indexed (and have identical data
types)

• Be careful of the column order!
• Look for covering indexes

Oct 12, 2007 MySQL Performance Coding
PAGE

25

What makes a column ideal for indexing?

• Selectivity
 % of distinct values in a column
 S=d/n
 Unique/primary always be 1.0

• If column has a low selectivity, it
can still be put in a multi-column
index
 But, which part? Prefix? Suffix?

Oct 12, 2007 MySQL Performance Coding
PAGE

26

Remove redundant or poor indexes

SELECT
 t.TABLE_SCHEMA AS `db`
 , t.TABLE_NAME AS `table`
 , s.INDEX_NAME AS `inde name`
 , s.COLUMN_NAME AS `field name`
 , s.SEQ_IN_INDEX `seq in index`
 , s2.max_columns AS `# cols`
 , s.CARDINALITY AS `card`
 , t.TABLE_ROWS AS `est rows`
 , ROUND(((s.CARDINALITY / IFNULL(t.TABLE_ROWS, 0.01)) * 100), 2) AS `sel %`
FROM INFORMATION_SCHEMA.STATISTICS s
 INNER JOIN INFORMATION_SCHEMA.TABLES t
 ON s.TABLE_SCHEMA = t.TABLE_SCHEMA
 AND s.TABLE_NAME = t.TABLE_NAME
 INNER JOIN (
 SELECT TABLE_SCHEMA, TABLE_NAME, INDEX_NAME, MAX(SEQ_IN_INDEX) AS max_columns
 FROM INFORMATION_SCHEMA.STATISTICS
 WHERE TABLE_SCHEMA != 'mysql'
 GROUP BY TABLE_SCHEMA, TABLE_NAME, INDEX_NAME
) AS s2
 ON s.TABLE_SCHEMA = s2.TABLE_SCHEMA
 AND s.TABLE_NAME = s2.TABLE_NAME
 AND s.INDEX_NAME = s2.INDEX_NAME
WHERE t.TABLE_SCHEMA != 'mysql' /* Filter out the mysql system DB */
AND t.TABLE_ROWS > 10 /* Only tables with some rows */
AND s.CARDINALITY IS NOT NULL /* Need at least one non-NULL value in the field */
AND (s.CARDINALITY / IFNULL(t.TABLE_ROWS, 0.01)) < 1.00 /* unique indexes are perfect anyway */
ORDER BY `sel %`, s.TABLE_SCHEMA, s.TABLE_NAME /* DESC for best non-unique indexes */
LIMIT 10;

http://forge.mysql.com/snippets/view.php?id=85

Oct 12, 2007 MySQL Performance Coding
PAGE

27

Whoah. Some crap-ass indexes, huh?

+--------------+------------------+----------------------+-------------+--------------+---------------+------+-------+-------+
| TABLE_SCHEMA | TABLE_NAME | INDEX_NAME | COLUMN_NAME | SEQ_IN_INDEX | COLS_IN_INDEX | CARD | ROWS | SEL % |
+--------------+------------------+----------------------+-------------+--------------+---------------+------+-------+-------+
worklog	amendments	text	text	1	1	1	33794	0.00
planetmysql	entries	categories	categories	1	3	1	4171	0.02
planetmysql	entries	categories	title	2	3	1	4171	0.02
planetmysql	entries	categories	content	3	3	1	4171	0.02
sakila	inventory	idx_store_id_film_id	store_id	1	2	1	4673	0.02
sakila	rental	idx_fk_staff_id	staff_id	1	1	3	16291	0.02
worklog	tasks	title	title	1	2	1	3567	0.03
worklog	tasks	title	description	2	2	1	3567	0.03
sakila	payment	idx_fk_staff_id	staff_id	1	1	6	15422	0.04
mysqlforge	mw_recentchanges	rc_ip	rc_ip	1	1	2	996	0.20
+--------------+------------------+----------------------+-------------+--------------+---------------+------+-------+-------+

Oct 12, 2007 MySQL Performance Coding
PAGE

28

Effect of index column order

mysql> EXPLAIN SELECT project, COUNT(*) as num_tags
 -> FROM Tag2Project
 -> GROUP BY project;
+-------------+-------+---------+--+
| table | type | key | Extra |
+-------------+-------+---------+--+
| Tag2Project | index | PRIMARY | Using index; Using temporary; Using filesort |
+-------------+-------+---------+--+

mysql> EXPLAIN SELECT tag, COUNT(*) as num_projects
 -> FROM Tag2Project
 -> GROUP BY tag;
+-------------+-------+---------+-------------+
| table | type | key | Extra |
+-------------+-------+---------+-------------+
| Tag2Project | index | PRIMARY | Using index |
+-------------+-------+---------+-------------+

mysql> CREATE INDEX project ON Tag2Project (project);
Query OK, 701 rows affected (0.01 sec)
Records: 701 Duplicates: 0 Warnings: 0

mysql> EXPLAIN SELECT project, COUNT(*) as num_tags
 -> FROM Tag2Project
 -> GROUP BY project;
+-------------+-------+---------+-------------+
| table | type | key | Extra |
+-------------+-------+---------+-------------+
| Tag2Project | index | project | Using index |
+-------------+-------+---------+-------------+

The Tag2Project Table:

CREATE TABLE Tag2Project (
tag INT UNSIGNED NOT NULL
, project INT UNSIGNED NOT NULL
, PRIMARY KEY (tag, project)
) ENGINE=MyISAM;

How do you tell if this is happening?

Look for increases in:
Created_tmp_tables and
Created_tmp_disk_tables
status counter variables

Oct 12, 2007 MySQL Performance Coding
PAGE

29

Covering indexes

• When all columns needed from a
single table for a SELECT are
available in the index

• No need to grab the rest of the
columns from the data (file or page)
 “Bookmark lookup” operation

• Important to know the data to index
organization of the storage engine!

Oct 12, 2007 MySQL Performance Coding
PAGE

30

Non-clustered organization (MyISAM)

1-100

Data file
containing
unordered
data records

1-33 34-66 67-100

Root Index Node stores a directory of keys,
along with pointers to non-leaf nodes (or leaf

nodes for a very small index)

Leaf nodes store
sub-directories of
index keys with
pointers into the

data file to a
specific record

Oct 12, 2007 MySQL Performance Coding
PAGE

31

Clustered organization (InnoDB)

1-100

1-33

In a clustered
layout, the leaf
nodes actually

contain all the data
for the record (not
just the index key,

like in the non-
clustered layout)

Root Index Node stores a directory
of keys, along with pointers to non-
leaf nodes (or leaf nodes for a very

small index)

34-66 67-100

So, bottom line:

When looking up a record by a primary key, for a clustered
layout/organization, the lookup operation (following the
pointer from the leaf node to the data file) involved in a non-
clustered layout is not needed.

Oct 12, 2007 MySQL Performance Coding
PAGE

32

Clustered indexes

• Very important to have as small a
clustering key (primary key) as
possible
 Why? Because every secondary index built on the

table will have the primary key appended to each
index record

• If you don't pick a primary key (bad
idea!), one will be created for you
 And, you have no control over the key (this is a 6

byte number in InnoDB...)

Oct 12, 2007 MySQL Performance Coding
PAGE

33

MySQL Performance Coding

The Code

Oct 12, 2007 MySQL Performance Coding
PAGE

34

Be a join-fu master!

• Don't think in terms of
iterators, for loops, while
loops, etc

• Instead, think in terms of
sets

• Break complex SQL
statements (or business
requests) into smaller,
manageable chunks

Correlated
subqueries shall

die!!

Oct 12, 2007 MySQL Performance Coding
PAGE

35

Set-wise thinking

“Show the last payment information for
each customer”
✔ Many programmers think:

✔ OK, for each customer, find the maximum
date the payment was made get that
payment record(s) (bad!)

✔ Think instead:
✔ OK, I have 2 sets of data here. One set

of last payments dates and another set
containing payment information (so, how
do I join these sets?)

Oct 12, 2007 MySQL Performance Coding
PAGE

36

The difference in execution plans?

mysql> EXPLAIN SELECT
 -> p.*
 -> FROM payment p
 -> WHERE p.payment_date =
 -> (SELECT MAX(payment_date)
 -> FROM payment
 -> WHERE customer_id=p.customer_id);
+--------------------+---------+------+---------------------------------+--------------+---------------+-------+-------------+
| select_type | table | type | possible_keys | key | ref | rows | Extra |
+--------------------+---------+------+---------------------------------+--------------+---------------+-------+-------------+
| PRIMARY | p | ALL | NULL | NULL | NULL | 16451 | Using where |
| DEPENDENT SUBQUERY | payment | ref | idx_fk_customer_id,payment_date | payment_date | p.customer_id | 12 | Using index |
+--------------------+---------+------+---------------------------------+--------------+---------------+-------+-------------+
3 rows in set (0.00 sec)

mysql> EXPLAIN SELECT
 -> p.*
 -> FROM (
 -> SELECT customer_id, MAX(payment_date) as last_order
 -> FROM payment
 -> GROUP BY customer_id
 ->) AS last_orders
 -> INNER JOIN payment p
 -> ON p.customer_id = last_orders.customer_id
 -> AND p.payment_date = last_orders.last_order;
+-------------+------------+-------+-------------------------+--------------------+--------------------------------+-------+
| select_type | table | type | possible_keys | key | ref | rows |
+-------------+------------+-------+---------------------------------+--------------------+------------------------+-------+
PRIMARY	<derived2>	ALL	NULL	NULL	NULL	599
PRIMARY	p	ref	idx_fk_customer_id,payment_date	payment_date	customer_id,last_order	1
DERIVED	payment	index	NULL	idx_fk_customer_id	NULL	16451
+-------------+------------+-------+---------------------------------+--------------------+------------------------+-------+
3 rows in set (0.10 sec)

Oct 12, 2007 MySQL Performance Coding
PAGE

37

The difference in performance

mysql> SELECT
 -> p.*
 -> FROM payment p
 -> WHERE p.payment_date =
 -> (SELECT MAX(payment_date)
 -> FROM payment
 -> WHERE customer_id=p.customer_id);
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
| payment_id | customer_id | staff_id | rental_id | amount | payment_date | last_update |
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
<snip>
| 16049 | 599 | 2 | 15725 | 2.99 | 2005-08-23 11:25:00 | 2006-02-15 19:24:13 |
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
623 rows in set (0.49 sec)

mysql> SELECT
 -> p.*
 -> FROM (
 -> SELECT customer_id, MAX(payment_date) as last_order
 -> FROM payment
 -> GROUP BY customer_id
 ->) AS last_orders
 -> INNER JOIN payment p
 -> ON p.customer_id = last_orders.customer_id
 -> AND p.payment_date = last_orders.last_order;
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
| payment_id | customer_id | staff_id | rental_id | amount | payment_date | last_update |
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
<snip>
| 16049 | 599 | 2 | 15725 | 2.99 | 2005-08-23 11:25:00 | 2006-02-15 19:24:13 |
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
623 rows in set (0.09 sec)

Oct 12, 2007 MySQL Performance Coding
PAGE

38

A word on too many joins

• Don't try to do joins on >8 tables
 Especially with MySQL <5.0
 Sometimes optimizer can try too hard to

find optimal plan

• Use a “temp table reduction” recipe
 Especially important for AND conditions

on many-to-many relation tables

• Or for small, static lookups, use
ENUM (or SET for many-to-many)

Oct 12, 2007 MySQL Performance Coding
PAGE

39

Operating on indexed column w/ function

mysql> EXPLAIN SELECT * FROM film WHERE title LIKE 'Tr%'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 type: range
possible_keys: idx_title
 key: idx_title
 key_len: 767
 ref: NULL
 rows: 15
 Extra: Using where

mysql> EXPLAIN SELECT * FROM film WHERE LEFT(title,2) = 'Tr' \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 951
 Extra: Using where

Nice. In the top query, we
have a fast range access on
the indexed field

Oops. In the bottom query,
we have a slower full table
scan because of the
function operating on the
indexed field (the LEFT()
function)

Oct 12, 2007 MySQL Performance Coding
PAGE

40

Operating on indexed column w/ function #2

SELECT * FROM Orders
WHERE TO_DAYS(CURRENT_DATE())
– TO_DAYS(order_created) <= 7;

Not a good idea! Lots o' problems
with this...

SELECT * FROM Orders
WHERE order_created
>= CURRENT_DATE() ­ INTERVAL 7 DAY;

Better... Now the index on
order_created will be used at least.
Still a problem, though...

SELECT order_id, order_created, customer
FROM Orders
WHERE order_created
>= '2007­02­11' ­ INTERVAL 7 DAY;

Best. Now the query cache can
cache this query, and given no
updates, only run it once a day...

replace the CURRENT_DATE() function with a constant string in your
programming language du jour... for instance, in PHP, we'd do:

$sql= “SELECT order_id, order_created, customer FROM Orders WHERE
order_created >= '“ .
date('Y-m-d') . “' - INTERVAL 7 DAY”;

Oct 12, 2007 MySQL Performance Coding
PAGE

41

Calculated fields example

CREATE TABLE Customers (
 customer_id INT NOT NULL
, email VARCHAR(80) NOT NULL
// more fields
, PRIMARY KEY (customer_id)
, INDEX (email(40))
) ENGINE=InnoDB;

// Bad idea, can't use index
// on email field
SELECT *
FROM Customers
WHERE email LIKE '%.com';

// So, we enable fast searching on a reversed field
// value by inserting a calculated field
ALTER TABLE Customers
ADD COLUMN rv_email VARCHAR(80) NOT NULL;

// Now, we update the existing table values
UPDATE Customers SET rv_email = REVERSE(email);

// Then, we create an index on the new field
CREATE INDEX ix_rv_email ON Customers (rv_email);

// Then, we make a trigger to keep our data in sync
DELIMITER ;;
CREATE TRIGGER trg_bi_cust
BEFORE INSERT ON Customers
FOR EACH ROW BEGIN
 SET NEW.rv_email = REVERSE(NEW.email);
END ;;

// same trigger for BEFORE UPDATE...
// Then SELECT on the new field...
WHERE rv_email LIKE CONCAT(REVERSE('.com'), '%');

Oct 12, 2007 MySQL Performance Coding
PAGE

42

Using stored procedures

• Question: where does the stored
procedure compile cache live?

• Don't use stored procedures for
simple SELECTs

• Use for:
 ETL or complex collections of SQL
 Repeated execution of statement
 Batch operations

Oct 12, 2007 MySQL Performance Coding
PAGE

43

UPDATEs and DELETEs

• Avoid DELETE, especially in MyISAM
 Use a deleted_rows table
 Insert rows into the table, then do

batched DELETEs
• Have lots of UPDATEs?

 Insert them into memcache
bucket, then periodically update
the tables...

Oct 12, 2007 MySQL Performance Coding
PAGE

44

MySQL Performance Coding

The Server

Oct 12, 2007 MySQL Performance Coding
PAGE

45

SHOW STATUS and SHOW VARIABLES

• SHOW STATUS
 Counter variables (lots of `em)
 Count reads, writes, threads, etc.

• SHOW VARIABLES
 Your configuration variables

• Both take a LIKE clause, for example:
mysql> SHOW STATUS LIKE 'Created_tmp%';
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
Created_tmp_disk_tables	499
Created_tmp_files	5
Created_tmp_tables	1933
+-------------------------+-------+

Oct 12, 2007 MySQL Performance Coding
PAGE

46

Server variable guidelines

• Be aware of what is global vs per thread
• Make small changes, then test
• Often provide a quick solution, but

temporary
• key_buffer_size != innodb_buffer_pool_size
• Memory is cheapest, fastest, easiest way to

increase performance
 But... bigger buffers aren't always a good

thing!

Oct 12, 2007 MySQL Performance Coding
PAGE

47

Important settings

• key_buffer_size (global, MyISAM only)
 Main MyISAM key cache (blocks of size 1K)
 Watch for Key_blocks_unused approaching 0

• table_cache (global)
 Number of simultaneously open file descriptors
 < 5.1 contains meta data about tables and file

descriptor
 >= 5.1 Split into table_open_cache

• myisam_sort_buffer_size (global, MyISAM only)
 Building indexes?
 Set this as high as possible

Oct 12, 2007 MySQL Performance Coding
PAGE

48

Average table scan and key cache hit ratio

• Examine Handler_read_rnd_next/Handler_read_rnd
for average size of table scans

• Examine Key_read_requests/Key_reads for your
MyISAM key cache hit ratio

mysql> SHOW STATUS LIKE 'Handler_read_rnd%';
+-----------------------+--------+
| Variable_name | Value |
+-----------------------+--------+
| Handler_read_rnd | 2188 |
| Handler_read_rnd_next | 217247 |
+-----------------------+--------+

mysql> SHOW STATUS LIKE 'Key_read%';
+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| Key_read_requests | 10063 |
| Key_reads | 98 |
+-------------------+-------+

Oct 12, 2007 MySQL Performance Coding
PAGE

49

Important settings for InnoDB

• innodb_buffer_pool_size
 Main InnoDB cache for both data and index

pages (16K page)
 If you have InnoDB-only system, set to 60-80%

of total memory
 Watch for Innodb_buffer_pool_pages_free

approaching 0
• innodb_log_file_size

 Size of the actual log file
 Set to 40-50% of innodb_buffer_pool_size
 Bigger means longer recovery, but less disk I/O

due to less checkpoint flush activity

Oct 12, 2007 MySQL Performance Coding
PAGE

50

Important settings for InnoDB

• innodb_log_buffer_size
 Size of double-write log buffer
 Set < 16M (recommend 1M to 8M)

• innodb_flush_method
 Determines how InnoDB flushes data and logs
 defaults to fsync()
 If getting lots of Innodb_data_pending_fsyncs

• Consider O_DIRECT (Linux only)
 Other ideas
 Get a battery-backed disk controller with a write-back

cache
 Set innodb_flush_log_at_trx_commit=2 (Risky)

Oct 12, 2007 MySQL Performance Coding
PAGE

51

Important settings for InnoDB

• Examine Innodb_buffer_pool_reads vs
Innodb_buffer_pool_read_requests for the cache hit ratio
mysql> SHOW STATUS LIKE 'Innodb_buffer_pool_read%';
+-----------------------------------+---------+
| Variable_name | Value |
+-----------------------------------+---------+
| Innodb_buffer_pool_read_requests | 5415365 |
| Innodb_buffer_pool_reads | 34260 |
+-----------------------------------+---------+

mysql> SHOW STATUS LIKE 'Qc%';
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
Qcache_free_blocks	1
Qcache_hits	6
Qcache_inserts	12
Qcache_not_cached	41
Qcache_lowmem_prunes	0
Questions	241
+-------------------------+-------+

• Examine Qcache_hits/Questions
for the query cache hit ratio

• Ensure Qcache_lowmem_prunes
is low

• Ensure Qcache_free_blocks = 1
 if not, FLUSH QUERY CACHE

Oct 12, 2007 MySQL Performance Coding
PAGE

52

Yo, we're hiring.

• Dozens of positions
open

• Work from anywhere
• Great bennies
• Travel if you want to
• A Swedish company

culture (but, sorry, no
free massages or hot
babes.)

• 5 weeks vacation

