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Who the heck am I?

• Just some dude who 
works at MySQL

• Working with PHP and 
MySQL for 6+ years

• Oh, I wrote a book, too...
• Other than that, I'm 

semi-normal, with wife, 
two cats, two dogs, blah, 
blah, blah
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A quick survey...

• 3.23? 4.0? 4.1? 5.0? 5.1?
• MyISAM? InnoDB? Archive? Memory?
• Replication? Cluster?
• PHP 4?  PHP 5? PHP 6?
• libmysql? Native Driver for MySQL?
• ext/mysql? ext/mysqli? PDO?
• Oracle? PostgreSQL? DB2? MSSQL? 

SQLite?
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The big three topics

The Schema

The Code

The Server
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But first, some general stuff...

• Performance != Scalability
• Benchmarking
• Overview of MySQL System Architecture
• Overview of the MySQL Query Cache
• The Scan vs. Seek Choice
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Performance !== Scalability

• Typically, we speak of performance 
when we talk about response times 
for a web page, an SQL statement, 
etc

• Scalability comes up when we talk 
about throughput, or the number of 
concurrent requests a node can 
serve within a certain timeframe
 or the size of the data increases
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Benchmarking

• Very important to benchmark both 
performance and scalability
 So, test with multiple concurrency 

levels and varying dataset sizes
• Toolbox

 mysqlslap
 Apache Bench (ab)
 sysbench
 Custom

•MyBench, Jmeter/Ant, Shell scripts...
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MySQL system architecture

Clients

Parser

Optimizer

Query
Cache

Pluggable Storage Engine API

MyISAM InnoDB MEMORY Falcon Archive PBXT SolidDB Cluster
(Ndb)

Connection
Handling &

Net I/O

“Packaging”
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MySQL system architecture notes

• Highly coupled subsystems
• Emphasis on connection-based memory 

allocation (as opposed to global)
• Caching on many different levels
• Storage engine layer is both blessing and 

curse
• Optimizer is cost-based, simplistic, and 

must be guarded against
• Efforts to modularize ongoing
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The MySQL query cache

• You must understand application 
read/write ratio

• Internal design is a compromise between 
CPU usage and read performance

• Bigger query cache != better 
performance, even for heavy read 
applications

• Not a silver bullet!
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The scan vs. seek choice

• A seek operation, generally speaking, jumps to 
a random place -- either on disk or in memory 
-- to fetch the data needed.  
 Repeat for each piece of data needed from 

disk or memory
• A scan operation, on the other hand, will jump to 

the start of a chunk of data, and sequentially 
read data -- either from disk or from memory -- 
until the end of the chunk of data
 For large amounts of data, scan operations 

tend to be more efficient than multiple seek 
operations
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And finally...

• Learn to use EXPLAIN!
• Too big a topic for this session, so download my 

workbook and slides from OSCON
• http://jpipes.com/presentations/target-practice

 /target-practice-workbook.pdf
 /target-practice.pdf (or .odp)
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MySQL Performance Coding

The Schema
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Data types

• Smaller, smaller, smaller!
 Do you really need that BIGINT?

• More records in single page of memory, 
faster seeks & scans

• AUTO_INCREMENT is a good thing!
 Generates a “hot spot” on disk and in 

memory
 Look at 5.1.21 for InnoDB scaling 

patch
• Use appropriate data types
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Appropriate data types

• INT UNSIGNED for IP addresses!
• Use VARCHAR carefully

 Converted to CHAR when used in a 
temporary table

• Use TEXT sparingly
 Consider separate tables

• Use BLOBs very sparingly
 Use the filesystem for what it was 

intended
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IPv4 addresses are INT UNSIGNED

CREATE TABLE Sessions (
  session_id INT UNSIGNED NOT NULL AUTO_INCREMENT
, ip_address INT UNSIGNED NOT NULL // Compared to CHAR(15)!!
, session_data TEXT NOT NULL
, PRIMARY KEY (session_id)
, INDEX (ip_address)
) ENGINE=InnoDB;

// Find all sessions coming from a local subnet
SELECT * FROM Sessions
WHERE ip_address BETWEEN 
INET_ATON('192.168.0.1') AND INET_ATON('192.168.0.255');

The INET_ATON() function reduces the string to a constant INT 
and a highly optimized range operation will be performed for:

SELECT * FROM Sessions
WHERE ip_address BETWEEN 3232235521 AND 3232235775
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Normalize first, denormalize later.  But...

http://thedailywtf.com/forums/thread/75982.aspx
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Partitioning

• Vertical partitioning
 Splits tables with many columns into 

multiple tables
• Horizontal partitioning

 Splits table with many rows into 
multiple tables

• Both are important for different reasons
• Partitioning in MySQL 5.1 is horizontal 

partitioning
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Vertical partioning example

CREATE TABLE Users (
  user_id INT NOT NULL AUTO_INCREMENT
, email VARCHAR(80) NOT NULL
, display_name VARCHAR(50) NOT NULL
, password CHAR(41) NOT NULL
, first_name VARCHAR(25) NOT NULL
, last_name VARCHAR(25) NOT NULL
, address VARCHAR(80) NOT NULL
, city VARCHAR(30) NOT NULL
, province CHAR(2) NOT NULL
, postcode CHAR(7) NOT NULL
, interests TEXT NULL
, bio TEXT NULL
, signature TEXT NULL
, skills TEXT NULL
, PRIMARY KEY (user_id)
, UNIQUE INDEX (email)
) ENGINE=InnoDB;

CREATE TABLE Users (
  user_id INT NOT NULL AUTO_INCREMENT
, email VARCHAR(80) NOT NULL
, display_name VARCHAR(50) NOT NULL
, password CHAR(41) NOT NULL
, PRIMARY KEY (user_id)
, UNIQUE INDEX (email)
) ENGINE=InnoDB;

CREATE TABLE UserExtra (
  user_id INT NOT NULL
, first_name VARCHAR(25) NOT NULL
, last_name VARCHAR(25) NOT NULL
, address VARCHAR(80) NOT NULL
, city VARCHAR(30) NOT NULL
, province CHAR(2) NOT NULL
, postcode CHAR(7) NOT NULL
, interests TEXT NULL
, bio TEXT NULL
, signature TEXT NULL
, skills TEXT NULL
, PRIMARY KEY (user_id)
) ENGINE=InnoDB;
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When vertical partitioning makes sense

• “Extra” columns are mostly NULL
• “Extra” columns are infrequently 

accessed
• When space in buffer pool is at a 

premium
 Splitting the table allows main records to 

consume the buffer pages without the extra 
data taking up space in memory

 Many more “main” records can fit into a single 
16K InnoDB data page

• Need FULLTEXT on your text columns?
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Vertical partioning example #2

CREATE TABLE Products (
  product_id INT NOT NULL 
, name VARCHAR(80) NOT NULL
, unit_cost DECIMAL(7,2) NOT NULL
, description TEXT NULL
, image_path TEXT NULL
, num_views INT UNSIGNED NOT NULL
, num_in_stock INT UNSIGNED NOT NULL
, num_on_order INT UNSIGNED NOT NULL
, PRIMARY KEY (product_id)
, INDEX (name(20))
) ENGINE=InnoDB; // Or MyISAM

// Getting a simple COUNT of products
// easy on MyISAM, terrible on InnoDB
SELECT COUNT(*)
FROM Products;

CREATE TABLE Products (
  product_id INT NOT NULL 
, name VARCHAR(80) NOT NULL
, unit_cost DECIMAL(7,2) NOT NULL
, description TEXT NULL
, image_path TEXT NULL
, PRIMARY KEY (product_id)
, INDEX (name(20))
) ENGINE=InnoDB; // Or MyISAM

CREATE TABLE ProductCounts (
  product_id INT NOT NULL
, num_views INT UNSIGNED NOT NULL
, num_in_stock INT UNSIGNED NOT NULL
, num_on_order INT UNSIGNED NOT NULL
, PRIMARY KEY (product_id)
) ENGINE=InnoDB;

CREATE TABLE TableCounts (
  total_products INT UNSIGNED NOT NULL
) ENGINE=MEMORY;
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Vertical partitioning solves more problems

• Mixing static attributes with frequently 
updated fields in a single table?
 Thrashing occurs with query cache.  Each time 

an update occurs on any record in the table, 
all queries referencing the table are 
invalidated in the Query Cache

• Doing COUNT(*) with no WHERE on an 
indexed field on an InnoDB table?
 Complications with versioning make full table 

counts very slow
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Horizontal partitioning options

• Eli covered this well yesterday
 (Thanks so much, Eli, I deleted four slides 

from my talk about it.)

• MySQL 5.1 Partitioning
 (Will be) good for taking 

advantage of multiple disks
• Custom partitioning (sharding)

 Currently, the way to go
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Indexes

• Speed up SELECTs, but slow down 
modifications

• Ensure indexes on columns used in 
WHERE, ON, GROUP BY clauses

• Always ensure JOIN conditions are 
indexed (and have identical data 
types)

• Be careful of the column order!
• Look for covering indexes
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What makes a column ideal for indexing?

• Selectivity
 % of distinct values in a column
 S=d/n
 Unique/primary always be 1.0

• If column has a low selectivity, it 
can still be put in a multi-column 
index
 But, which part?  Prefix? Suffix?
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Remove redundant or poor indexes

SELECT
  t.TABLE_SCHEMA AS `db`
 , t.TABLE_NAME AS `table`
 , s.INDEX_NAME AS `inde name`
 , s.COLUMN_NAME AS `field name`
 , s.SEQ_IN_INDEX `seq in index`
 , s2.max_columns AS `# cols`
 , s.CARDINALITY AS `card`
 , t.TABLE_ROWS AS `est rows`
 , ROUND(((s.CARDINALITY / IFNULL(t.TABLE_ROWS, 0.01)) * 100), 2) AS `sel %`
FROM INFORMATION_SCHEMA.STATISTICS s
 INNER JOIN INFORMATION_SCHEMA.TABLES t
  ON s.TABLE_SCHEMA = t.TABLE_SCHEMA
  AND s.TABLE_NAME = t.TABLE_NAME
 INNER JOIN (
  SELECT TABLE_SCHEMA, TABLE_NAME, INDEX_NAME, MAX(SEQ_IN_INDEX) AS max_columns
  FROM INFORMATION_SCHEMA.STATISTICS
  WHERE TABLE_SCHEMA != 'mysql'
  GROUP BY TABLE_SCHEMA, TABLE_NAME, INDEX_NAME
 ) AS s2
 ON s.TABLE_SCHEMA = s2.TABLE_SCHEMA
 AND s.TABLE_NAME = s2.TABLE_NAME
 AND s.INDEX_NAME = s2.INDEX_NAME
WHERE t.TABLE_SCHEMA != 'mysql'       /* Filter out the mysql system DB */
AND t.TABLE_ROWS > 10                 /* Only tables with some rows */
AND s.CARDINALITY IS NOT NULL         /* Need at least one non-NULL value in the field */
AND (s.CARDINALITY / IFNULL(t.TABLE_ROWS, 0.01)) < 1.00 /* unique indexes are perfect anyway */
ORDER BY `sel %`, s.TABLE_SCHEMA, s.TABLE_NAME          /* DESC for best non-unique indexes */
LIMIT 10;

http://forge.mysql.com/snippets/view.php?id=85
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Whoah.  Some crap-ass indexes, huh?

+--------------+------------------+----------------------+-------------+--------------+---------------+------+-------+-------+
| TABLE_SCHEMA | TABLE_NAME       | INDEX_NAME           | COLUMN_NAME | SEQ_IN_INDEX | COLS_IN_INDEX | CARD | ROWS  | SEL % |
+--------------+------------------+----------------------+-------------+--------------+---------------+------+-------+-------+
| worklog      | amendments       | text                 | text        |            1 |             1 |    1 | 33794 |  0.00 | 
| planetmysql  | entries          | categories           | categories  |            1 |             3 |    1 |  4171 |  0.02 | 
| planetmysql  | entries          | categories           | title       |            2 |             3 |    1 |  4171 |  0.02 | 
| planetmysql  | entries          | categories           | content     |            3 |             3 |    1 |  4171 |  0.02 | 
| sakila       | inventory        | idx_store_id_film_id | store_id    |            1 |             2 |    1 |  4673 |  0.02 | 
| sakila       | rental           | idx_fk_staff_id      | staff_id    |            1 |             1 |    3 | 16291 |  0.02 | 
| worklog      | tasks            | title                | title       |            1 |             2 |    1 |  3567 |  0.03 | 
| worklog      | tasks            | title                | description |            2 |             2 |    1 |  3567 |  0.03 | 
| sakila       | payment          | idx_fk_staff_id      | staff_id    |            1 |             1 |    6 | 15422 |  0.04 | 
| mysqlforge   | mw_recentchanges | rc_ip                | rc_ip       |            1 |             1 |    2 |   996 |  0.20 | 
+--------------+------------------+----------------------+-------------+--------------+---------------+------+-------+-------+
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Effect of index column order

mysql> EXPLAIN SELECT project, COUNT(*) as num_tags
    -> FROM Tag2Project
    -> GROUP BY project;
+-------------+-------+---------+----------------------------------------------+
| table       | type  | key     | Extra                                        |
+-------------+-------+---------+----------------------------------------------+
| Tag2Project | index | PRIMARY | Using index; Using temporary; Using filesort | 
+-------------+-------+---------+----------------------------------------------+

mysql> EXPLAIN SELECT tag, COUNT(*) as num_projects
    -> FROM Tag2Project
    -> GROUP BY tag;
+-------------+-------+---------+-------------+
| table       | type  | key     | Extra       |
+-------------+-------+---------+-------------+
| Tag2Project | index | PRIMARY | Using index | 
+-------------+-------+---------+-------------+

mysql> CREATE INDEX project ON Tag2Project (project);
Query OK, 701 rows affected (0.01 sec)
Records: 701  Duplicates: 0  Warnings: 0

mysql> EXPLAIN SELECT project, COUNT(*) as num_tags
    -> FROM Tag2Project
    -> GROUP BY project;
+-------------+-------+---------+-------------+
| table       | type  | key     | Extra       |
+-------------+-------+---------+-------------+
| Tag2Project | index | project | Using index | 
+-------------+-------+---------+-------------+

The Tag2Project Table:

CREATE TABLE Tag2Project (
tag INT UNSIGNED NOT NULL
, project INT UNSIGNED NOT NULL
, PRIMARY KEY (tag, project)
) ENGINE=MyISAM;

How do you tell if this is happening?

Look for increases in:
Created_tmp_tables and
Created_tmp_disk_tables
status counter variables
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Covering indexes

• When all columns needed from a 
single table for a SELECT are 
available in the index

• No need to grab the rest of the 
columns from the data (file or page)
 “Bookmark lookup” operation

• Important to know the data to index 
organization of the storage engine!
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Non-clustered organization (MyISAM)

1-100

Data file
containing 
unordered
data records

1-33 34-66 67-100

Root Index Node stores a directory of keys, 
along with pointers to non-leaf nodes (or leaf 

nodes for a very small index)

Leaf nodes store 
sub-directories of 
index keys with 
pointers into the 

data file to a 
specific record



Oct 12, 2007 MySQL Performance Coding
PAGE 

31

Clustered organization (InnoDB)

1-100

1-33

In a clustered 
layout, the leaf 
nodes actually 

contain all the data 
for the record (not 
just the index key, 

like in the non-
clustered layout)

Root Index Node stores a directory 
of keys, along with pointers to non-
leaf nodes (or leaf nodes for a very 

small index)

34-66 67-100

So, bottom line: 

When looking up a record by a primary key, for a clustered 
layout/organization, the lookup operation (following the 
pointer from the leaf node to the data file) involved in a non-
clustered layout is not needed.
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Clustered indexes

• Very important to have as small a 
clustering key (primary key) as 
possible
 Why?  Because every secondary index built on the 

table will have the primary key appended to each 
index record

• If you don't pick a primary key (bad 
idea!), one will be created for you
 And, you have no control over the key (this is a 6 

byte number in InnoDB...)
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MySQL Performance Coding

The Code
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Be a join-fu master!

• Don't think in terms of 
iterators, for loops, while 
loops, etc

• Instead, think in terms of 
sets

• Break complex SQL 
statements (or business 
requests) into smaller, 
manageable chunks

Correlated 
subqueries shall 

die!!
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Set-wise thinking

“Show the last payment information for 
each customer”
✔ Many programmers think:

✔ OK, for each customer, find the maximum 
date the payment was made get that 
payment record(s) (bad!)

✔ Think instead:
✔ OK, I have 2 sets of data here.  One set 

of last payments dates and another set 
containing payment information (so, how 
do I join these sets?)
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The difference in execution plans?

mysql> EXPLAIN SELECT 
    ->   p.*
    -> FROM payment p
    -> WHERE p.payment_date =
    -> ( SELECT MAX(payment_date) 
    ->   FROM payment 
    ->   WHERE customer_id=p.customer_id);
+--------------------+---------+------+---------------------------------+--------------+---------------+-------+-------------+
| select_type        | table   | type | possible_keys                   | key          | ref           | rows  | Extra       |
+--------------------+---------+------+---------------------------------+--------------+---------------+-------+-------------+
| PRIMARY            | p       | ALL  | NULL                            | NULL         | NULL          | 16451 | Using where | 
| DEPENDENT SUBQUERY | payment | ref  | idx_fk_customer_id,payment_date | payment_date | p.customer_id |    12 | Using index | 
+--------------------+---------+------+---------------------------------+--------------+---------------+-------+-------------+
3 rows in set (0.00 sec)

mysql> EXPLAIN SELECT 
    ->   p.*
    -> FROM (
    ->  SELECT customer_id, MAX(payment_date) as last_order
    ->  FROM payment
    ->  GROUP BY customer_id
    -> ) AS last_orders
    -> INNER JOIN payment p
    -> ON p.customer_id = last_orders.customer_id
    -> AND p.payment_date = last_orders.last_order;
+-------------+------------+-------+-------------------------+--------------------+--------------------------------+-------+
| select_type | table      | type  | possible_keys                   | key                | ref                    | rows  |
+-------------+------------+-------+---------------------------------+--------------------+------------------------+-------+
| PRIMARY     | <derived2> | ALL   | NULL                            | NULL               | NULL                   |   599 | 
| PRIMARY     | p          | ref   | idx_fk_customer_id,payment_date | payment_date       | customer_id,last_order |     1 | 
| DERIVED     | payment    | index | NULL                            | idx_fk_customer_id | NULL                   | 16451 | 
+-------------+------------+-------+---------------------------------+--------------------+------------------------+-------+
3 rows in set (0.10 sec)
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The difference in performance

mysql> SELECT 
    ->   p.*
    -> FROM payment p
    -> WHERE p.payment_date =
    -> ( SELECT MAX(payment_date) 
    ->   FROM payment 
    ->   WHERE customer_id=p.customer_id);
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
| payment_id | customer_id | staff_id | rental_id | amount | payment_date        | last_update         |
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
<snip>
|      16049 |         599 |        2 |     15725 |   2.99 | 2005-08-23 11:25:00 | 2006-02-15 19:24:13 | 
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
623 rows in set (0.49 sec)

mysql> SELECT 
    ->   p.*
    -> FROM (
    ->  SELECT customer_id, MAX(payment_date) as last_order
    ->  FROM payment
    ->  GROUP BY customer_id
    -> ) AS last_orders
    -> INNER JOIN payment p
    -> ON p.customer_id = last_orders.customer_id
    -> AND p.payment_date = last_orders.last_order;
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
| payment_id | customer_id | staff_id | rental_id | amount | payment_date        | last_update         |
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
<snip>
|      16049 |         599 |        2 |     15725 |   2.99 | 2005-08-23 11:25:00 | 2006-02-15 19:24:13 | 
+------------+-------------+----------+-----------+--------+---------------------+---------------------+
623 rows in set (0.09 sec)
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A word on too many joins

• Don't try to do joins on >8 tables
 Especially with MySQL <5.0
 Sometimes optimizer can try too hard to 

find optimal plan

• Use a “temp table reduction” recipe
 Especially important for AND conditions 

on many-to-many relation tables

• Or for small, static lookups, use 
ENUM (or SET for many-to-many)
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Operating on indexed column w/ function

mysql> EXPLAIN SELECT * FROM film WHERE title LIKE 'Tr%'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: film
         type: range
possible_keys: idx_title
          key: idx_title
      key_len: 767
          ref: NULL
         rows: 15
        Extra: Using where

mysql> EXPLAIN SELECT * FROM film WHERE LEFT(title,2) = 'Tr' \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: film
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 951
        Extra: Using where

Nice.  In the top query, we 
have a fast range access on 
the indexed field

Oops.  In the bottom query, 
we have a slower full table 
scan because of the 
function operating on the 
indexed field (the LEFT() 
function)



Oct 12, 2007 MySQL Performance Coding
PAGE 

40

Operating on indexed column w/ function #2

SELECT * FROM Orders
WHERE TO_DAYS(CURRENT_DATE()) 
– TO_DAYS(order_created) <= 7;

Not a good idea!  Lots o' problems 
with this...

SELECT * FROM Orders
WHERE order_created 
>= CURRENT_DATE() ­ INTERVAL 7 DAY;

Better... Now the index on 
order_created will be used at least.  
Still a problem, though...

SELECT order_id, order_created, customer
FROM Orders
WHERE order_created 
>= '2007­02­11' ­ INTERVAL 7 DAY;

Best.  Now the query cache can 
cache this query, and given no 
updates, only run it once a day...

replace the CURRENT_DATE() function with a constant string in your 
programming language du jour... for instance, in PHP, we'd do:

$sql= “SELECT order_id, order_created, customer FROM Orders WHERE 
order_created >= '“ .
date('Y-m-d') . “' - INTERVAL 7 DAY”;
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Calculated fields example

CREATE TABLE Customers (
  customer_id INT NOT NULL
, email VARCHAR(80) NOT NULL
// more fields
, PRIMARY KEY (customer_id)
, INDEX (email(40))
) ENGINE=InnoDB;

// Bad idea, can't use index
// on email field
SELECT *
FROM Customers
WHERE email LIKE '%.com';

// So, we enable fast searching on a reversed field
// value by inserting a calculated field
ALTER TABLE Customers
ADD COLUMN rv_email VARCHAR(80) NOT NULL;

// Now, we update the existing table values
UPDATE Customers SET rv_email = REVERSE(email);

// Then, we create an index on the new field
CREATE INDEX ix_rv_email ON Customers (rv_email);

// Then, we make a trigger to keep our data in sync
DELIMITER ;;
CREATE TRIGGER trg_bi_cust 
BEFORE INSERT ON Customers
FOR EACH ROW BEGIN
 SET NEW.rv_email = REVERSE(NEW.email);
END ;;

// same trigger for BEFORE UPDATE...
// Then SELECT on the new field...
WHERE rv_email LIKE CONCAT(REVERSE('.com'), '%');
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Using stored procedures

• Question: where does the stored 
procedure compile cache live?

• Don't use stored procedures for 
simple SELECTs

• Use for:
 ETL or complex collections of SQL
 Repeated execution of statement
 Batch operations
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UPDATEs and DELETEs

• Avoid DELETE, especially in MyISAM
 Use a deleted_rows table
 Insert rows into the table, then do 

batched DELETEs
• Have lots of UPDATEs?

 Insert them into memcache 
bucket, then periodically update 
the tables...
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MySQL Performance Coding

The Server
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SHOW STATUS and SHOW VARIABLES

• SHOW STATUS
 Counter variables (lots of `em)
 Count reads, writes, threads, etc.

• SHOW VARIABLES
 Your configuration variables

• Both take a LIKE clause, for example:
mysql> SHOW STATUS LIKE 'Created_tmp%';
+-------------------------+-------+
| Variable_name           | Value |
+-------------------------+-------+
| Created_tmp_disk_tables | 499   | 
| Created_tmp_files       | 5     | 
| Created_tmp_tables      | 1933  | 
+-------------------------+-------+
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Server variable guidelines

• Be aware of what is global vs per thread
• Make small changes, then test
• Often provide a quick solution, but 

temporary
• key_buffer_size != innodb_buffer_pool_size
• Memory is cheapest, fastest, easiest way to 

increase performance
 But... bigger buffers aren't always a good 

thing!
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Important settings

• key_buffer_size  (global, MyISAM only)
 Main MyISAM key cache (blocks of size 1K)
 Watch for Key_blocks_unused approaching 0

• table_cache (global)
 Number of simultaneously open file descriptors
 < 5.1 contains meta data about tables and file 

descriptor
 >= 5.1 Split into table_open_cache

• myisam_sort_buffer_size (global, MyISAM only)
 Building indexes?
 Set this as high as possible
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Average table scan and key cache hit ratio

• Examine Handler_read_rnd_next/Handler_read_rnd 
for average size of table scans

• Examine Key_read_requests/Key_reads for your 
MyISAM key cache hit ratio

mysql> SHOW STATUS LIKE 'Handler_read_rnd%';
+-----------------------+--------+
| Variable_name         | Value  |
+-----------------------+--------+
| Handler_read_rnd      | 2188   | 
| Handler_read_rnd_next | 217247 | 
+-----------------------+--------+

mysql> SHOW STATUS LIKE 'Key_read%';
+-------------------+-------+
| Variable_name     | Value |
+-------------------+-------+
| Key_read_requests | 10063 | 
| Key_reads         | 98    | 
+-------------------+-------+
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Important settings for InnoDB

• innodb_buffer_pool_size 
 Main InnoDB cache for both data and index 

pages (16K page)
 If you have InnoDB-only system, set to 60-80% 

of total memory
 Watch for Innodb_buffer_pool_pages_free 

approaching 0
• innodb_log_file_size

 Size of the actual log file
 Set to 40-50% of innodb_buffer_pool_size
 Bigger means longer recovery, but less disk I/O 

due to less checkpoint flush activity
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Important settings for InnoDB

• innodb_log_buffer_size
 Size of double-write log buffer
 Set < 16M (recommend 1M to 8M)

• innodb_flush_method
 Determines how InnoDB flushes data and logs
 defaults to fsync()
 If getting lots of Innodb_data_pending_fsyncs

• Consider O_DIRECT (Linux only)
 Other ideas
 Get a battery-backed disk controller with a write-back 

cache
 Set innodb_flush_log_at_trx_commit=2 (Risky)
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Important settings for InnoDB

• Examine Innodb_buffer_pool_reads vs 
Innodb_buffer_pool_read_requests for the cache hit ratio
mysql> SHOW STATUS LIKE 'Innodb_buffer_pool_read%';
+-----------------------------------+---------+
| Variable_name                     | Value   |
+-----------------------------------+---------+ 
| Innodb_buffer_pool_read_requests  | 5415365 | 
| Innodb_buffer_pool_reads          | 34260   | 
+-----------------------------------+---------+

mysql> SHOW STATUS LIKE 'Qc%';
+-------------------------+-------+
| Variable_name           | Value |
+-------------------------+-------+
| Qcache_free_blocks      | 1     | 
| Qcache_hits             | 6     | 
| Qcache_inserts          | 12    | 
| Qcache_not_cached       | 41    |
| Qcache_lowmem_prunes    | 0     | 
| Questions               | 241   | 
+-------------------------+-------+

• Examine Qcache_hits/Questions 
for the query cache hit ratio

• Ensure Qcache_lowmem_prunes 
is low

• Ensure Qcache_free_blocks = 1
 if not, FLUSH QUERY CACHE
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Yo, we're hiring.

• Dozens of positions 
open

• Work from anywhere
• Great bennies
• Travel if you want to
• A Swedish company 

culture (but, sorry, no 
free massages or hot 
babes.)

• 5 weeks vacation


