
Target Practice
A Workshop in Tuning MySQL Queries

OSCON 2007

Jay Pipes

Community Relations Manager, North America

MySQL, Inc.

Setup

Download materials and MySQL Community Server

Download workshop materials
Download the presentation materials from http://jpipes.com/target-
practice/materials.tar.gz (or .zip)

shell> cd ~

shell> wget http://jpipes.com/presentations/target-practice/target-practice.tar.gz
(or .zip)

Untar/unzip to a directory
shell> tar -xzf target-practice.tar.gz

Download MySQL Community Server
Download the latest MySQL Community Server (binary, not source) package to this
directory
mysql-5.0.45-[os]-[platform]-[compiler].tar.gz
Untar/unzip the MySQL server binary

shell> tar -xzf mysql-5.*

Install the server:
shell> groupadd mysql

shell> useradd -g mysql mysql

shell> usermod -aG mysql [yourusername]

shell> ln -s FULL-PATH-TO-MYSQL-VERSION-OS mysql

shell> cd mysql

shell> sudo chown -R mysql .

shell> sudo chgrp -R mysql .

shell> sudo ./scripts/mysql_install_db --user=mysql

shell> sudo chown -R mysql:mysql data

shell> sudo ./bin/mysqld_safe --user=mysql --port=3307 &

Install the sakila sample database:
shell> ./bin/mysql --user=root < ../sakila-db/sakila-schema.sql

shell> ./bin/mysql--user=root < ../sakila-db/sakila-data.sql

Use the mysql command line client and log into the sakila DB
shell> ./bin/mysql--user=root sakila

http://jpipes.com/target-practice/materials.tar.gz
http://jpipes.com/target-practice/materials.tar.gz
http://jpipes.com/presentations/target-practice/materials.tar.gz
http://jpipes.com/presentations/target-practice/materials.tar.gz
http://jpipes.com/presentations/target-practice/materials.tar.gz
http://jpipes.com/target-practice/materials.tar.gz
http://jpipes.com/target-practice/materials.tar.gz
http://jpipes.com/target-practice/materials.tar.gz
http://jpipes.com/target-practice/materials.tar.gz

Graphical overview of the MySQL Server

The EXPLAIN Command
● Provides the execution plan chosen by the MySQL optimizer for a specific

SELECT statement
● Simply append the word EXPLAIN to the beginning of your SELECT statement

The Basics of EXPLAIN
Each row in output represents a set of information used in the SELECT

● A real schema table
● A virtual table (derived table) or temporary table
● A subquery in SELECT or WHERE
● A unioned set

Hey Jay, what's up with that \G switch?

The mysql command line client has a \G switch which re-arranges the output
into a vertical format, making wide rows easy to read in a terminal.

Important columns in EXPLAIN output
● select_type

○ The type of “set” the data in this row contains
○ Common values

■ SIMPLE: Regular table access
■ DERIVED: Result of a derived table (materialized - kind of...)
■ DEPENDENT SUBQUERY: A correlated subquery (sometimes...)
■ SUBQUERY: A non-correlated subquery
■ UNION RESULT: A unioned result

● table
○ The alias (or full table name if no alias) of the table or derived table from

which the data in this set comes
● type

○ The “access strategy” used to grab the data in this set
● possible_keys

○ Lists any keys available to optimizer to choose to use during its creation of
an execution plan

● keys
○ Lists the keys chosen by the optimizer (or a single key if < MySQL 5.0)

● rows
○ An estimate of the number of rows contained in this set

■ Accurate for some engines
■ Wildly inaccurate for other engines

● Extra
○ Extra information the optimizer chooses to give you
○ Lots of good stuff, which we'll be covering in a bit

● ref
○ Not as important, but shows the column used in join relations

Extra info:

http://dev.mysql.com/doc/refman/5.0/en/explain.html

http://dev.mysql.com/doc/refman/5.0/en/explain.html

The access strategies (type column values)

The best way to learn about the access strategies is to just go into the command
line client and start executing queries.

Let's go and get the rental record for the rental with a rental_id of 13.

Open up a mysql client session to the sakila database and enter the following:

SELECT * FROM rental WHERE rental_id = 13\G

You should get the following returned:

*************************** 1. row ***************************

 rental_id: 13

 rental_date: 2005-05-25 00:22:55

inventory_id: 2294

 customer_id: 334

 return_date: 2005-05-30 04:28:55

 staff_id: 1

 last_update: 2006-02-15 21:30:53

1 row in set (0.09 sec)

listing 1.

Now find out what the MySQL optimizer chose as an access strategy:

EXPLAIN SELECT * FROM rental WHERE rental_id = 13\G

You should see the following:

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: rental

 type: const

possible_keys: PRIMARY

 key: PRIMARY

 key_len: 4

 ref: const

 rows: 1

 Extra:

1 row in set (0.00 sec)

listing 2.

The const and system access strategies

In listing 2, you will notice that the access strategy chosen was const. The const
access strategy is just about as good as you can get from the optimizer.

It means that a WHERE clause was provided in the SELECT statement that used:
● an equality operator
● on a field indexed with a unique non-nullable key
● and a constant value was supplied

The access strategy of system is related to const and refers to when a table
with only a single row is referenced in the SELECT

Constant propogation

Let's suppose we want to include additional information from another table to our
query above. Instead of just a customer ID in the output, let's grab the customer's
name as well.

Enter the following into the mysql command line client:

SELECT r.*, c.first_name, c.last_name

FROM rental r

INNER JOIN customer c

ON r.customer_id = c.customer_id

WHERE r.rental_id = 13\G

You should end up with the following:

*************************** 1. row ***************************

 rental_id: 13

 rental_date: 2005-05-25 00:22:55

inventory_id: 2294

 customer_id: 334

 return_date: 2005-05-30 04:28:55

 staff_id: 1

 last_update: 2006-02-15 21:30:53

 first_name: RAYMOND

 last_name: MCWHORTER

1 row in set (0.01 sec)

listing 3.

OK, easy enough. Take a look at the EXPLAIN output now. The results should look
like listing 4:

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: r

 type: const

possible_keys: PRIMARY,idx_fk_customer_id

 key: PRIMARY

 key_len: 4

 ref: const

 rows: 1

 Extra:

*************************** 2. row ***************************

 id: 1

 select_type: SIMPLE

 table: c

 type: const

possible_keys: PRIMARY

 key: PRIMARY

 key_len: 2

 ref: const

 rows: 1

 Extra:

2 rows in set (0.00 sec)

listing 4.

What is going on here?

Well, the optimizer reduced the query through something called constant
propogation.

The optimizer determined that the PRIMARY KEY index on rental (rental_id) would
yield a single row for the criteria supplied (rental_id = 13). This single row will
always yield a single value for the customer_id field, and so the optimizer first
retrieves the single row from the rental table and then replaces the join condition:

ON r.customer_id = c.customer_id

with a row retrieval into the customer table on it's PRIMARY KEY index (customer_id)
using the value from the rental.customer_id field.

Because of this retrieval --> row data --> constant value supplied to unique index
scenario, this is called constant propogation.

The range access strategy

Continuing with our example, let's assume that instead of getting just a single
rental record, we need to find all rentals that were made between the 14th and 16th

of June, 2005. We'll need to make a change to our original SELECT statement to
use a BETWEEN operator:

SELECT * FROM rental

WHERE rental_date BETWEEN '2005-06-14' AND '2005-06-16'\G

I won't output the results here, for brevity, but you should notice a total of 364
records returned from the above query.

Take a look at the EXPLAIN output. You should see the following:

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: rental

 type: range

possible_keys: rental_date

 key: rental_date

 key_len: 8

 ref: NULL

 rows: 364

 Extra: Using where

1 row in set (0.00 sec)

listing 5.

As you can see, the access strategy chosen by the optimizer is the range type.
This makes perfect sense, since we are using a BETWEEN operator in the WHERE
clause. The BETWEEN operator deals with ranges, as do <, <=, IN, >, >=.

The MySQL optimizer is highly optimized to deal with range optimizations.

Generally, range operations are very quick, but here's some things you may not be
aware of regarding the range access strategy:

● An index must be available on the field operated upon by a range operator
(see page 12-13)

● If too many records are estimated to be returned by the condition, the range
operator won't be used (see next page)
○ an index or a full table scan will instead be preferred (see page 12-13)

● The field must not be operated on by a function call (see page XXX)

The scan vs seek dilemma

Behind the scenes, the MySQL optimizer has to decide what access strategy to use
in order to retrieve information from the storage engine.

One of the decisions it must make is whether to do a seek operation or a scan
operation.

A seek operation, generally speaking, jumps into a random place -- either on disk
or in memory -- to fetch the data needed. The operation is repeated for each piece
of data needed from disk or memory.

A scan operation, on the other hand, will jump to the start of a chunk of data, and
sequentially read data -- either from disk or from memory -- until the end of the
chunk of data.

For large amounts of data, scan operations tend to be more efficient than
multiple seek operations.

Therefore, the optimizer determines which operation to perform depending on
whether the estimated number of matched rows in the data sets is more than a
certain threshold percentage of the total number of records in the table or index.

Note that this threshold is not a static number and has changed and may
change in various versions of MySQL

To demonstrate this scan versus seek choice, let's modify our range query from
above to include a larger range of rental_dates.

Enter this modified SELECT into the mysql command line client:

SELECT COUNT(*) FROM rental

WHERE rental_date BETWEEN '2005-06-14' AND '2005-06-21';

Notice I've just stretched the date range out to a week; no other modifications were
made to the query. You should get the number 2,036 from the above query. There
are a total of 16,044 records in the rental table.

Removing the COUNT(*) and replacing with *, get the execution plan for the above
query:

EXPLAIN SELECT * FROM rental

WHERE rental_date BETWEEN '2005-06-14' AND '2005-06-21'\G

You should see the following:

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: rental

 type: ALL

possible_keys: rental_date

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 16298

 Extra: Using where

1 row in set (0.00 sec)

listing 6.

Clearly, the optimizer is no longer using the range access strategy. Instead,
because the number of rows estimated to be matched by the condition:

WHERE rental_date BETWEEN '2005-06-14' AND '2005-06-21'

broke the internal threshold the optimizer uses to determine whether to perform a
single scan or a seek operation for each matched record. In this case, the optimizer
chose to perform a full table scan, which corresponds to the ALL access strategy
you see in the type column of the EXPLAIN output in listing 6.

The ALL access strategy (Full Table Scan)

The full table scan (ALL type column value) is definitely something you want to
watch out for, particularly if:

● You are not running a data warehouse scenario
● You are supplying a WHERE clause to the SELECT
● You have very large data sets

Sometimes, full table scans cannot be avoided -- and sometimes they can perform
better than other access strategies -- but generally they are a sign of a lack of
proper indexing on your schema.

For instance, let's return to our range access example:

SELECT * FROM rental

WHERE rental_date BETWEEN '2005-06-14' AND '2005-06-16'\G

which had the EXPLAIN output:

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: rental

 type: range

possible_keys: rental_date

 key: rental_date

 key_len: 8

 ref: NULL

 rows: 364

 Extra: Using where

1 row in set (0.00 sec)

listing 5 (repeated).

Remember that I noted one of the requirements for getting the optimized range
access strategy was that an index needed to be available on the field operated on
by the range operator (rental_date in the example above).

Let's remove the index on rental_date and see what happens to our execution plan.

To demonstrate, let's drop the rental_date index on rental:

mysql> DROP INDEX rental_date ON rental;

Query OK, 16044 rows affected (1.22 sec)

Records: 16044 Duplicates: 0 Warnings: 0

and re-execute our SELECT which produced a range access strategy from before:

EXPLAIN SELECT * FROM rental

WHERE rental_date BETWEEN '2005-06-14' AND '2005-06-16'\G

you should now see the following output:

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: rental

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 16355

 Extra: Using where

1 row in set (0.02 sec)

Oops.

Remember: If you don't have an appropriate index, no range optimization

To reset our data, let's add our rental_date index back to the schema...

mysql> ALTER TABLE rental ADD INDEX rental_date (rental_date, inventory_id,
customer_id);

Query OK, 16044 rows affected (1.00 sec)

Records: 16044 Duplicates: 0 Warnings: 0

Yes, the rental_date index did originally have 3 columns in it...in case you didn't
notice before. :)

The eq_ref access strategy

Now let's take a look at some of the access strategies that come up when doing
joins of various sorts.

The first one we'll examine is the eq_ref access strategy, which comes up when two
tables are related (joined) on a field which has a unique, non-nullable index on
one side of the join condition, and an indexed field on the other side.

Let's augment our range SELECT from before to include the customer's first and last
name (like we did on page 8):

EXPLAIN SELECT r.*, c.first_name, c.last_name

FROM rental r

INNER JOIN customer c

ON r.customer_id = c.customer_id

WHERE r.rental_date BETWEEN '2005-06-14' AND '2005-06-16'\G

you should get the following execution plan:

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: r

 type: range

possible_keys: idx_fk_customer_id,rental_date

 key: rental_date

 key_len: 8

 ref: NULL

 rows: 364

 Extra: Using where

*************************** 2. row ***************************

 id: 1

 select_type: SIMPLE

 table: c

 type: eq_ref

possible_keys: PRIMARY

 key: PRIMARY

 key_len: 2

 ref: sakila.r.customer_id

 rows: 1

 Extra:

2 rows in set (0.00 sec)

The top set should be no surprise. It's identical to that of listing 5.

The bottom set displays the access strategy chosen by the optimizer to fulfill the
join on the customer table. An eq_ref access strategy was chosen because a
unique, non-nullable index is available on customer.customer_id and an index is
available on the rental.customer_id field.

Note that in the “ref” column of the bottom set shows the indexed field in the rental
table (sakila.r.customer_id) which enables the eq_ref to occur on the
customer.customer_id PRIMARY KEY field.

Caution: Geek content here.

The MySQL optimizer will perform the above execution plan using a nested-
loops join algorithm.

For each record the optimizer fetches in the top set (the rental table), the
optimizer will seek into the customer.customer_id index for the customer_id
value in the rental record. A hash table of pointers to the customer table's
matched records then allows the first name and last name data to be pulled
from the storage engine to complete the SELECT request.

The ref and ref_or_null access strategies

Two variations on the eq_ref access strategies that you may see pop up are the ref
and ref_or_null access strategies. These strategies, while fast, are not as well
performing as the eq_ref strategy because the eq_ref strategy can rely on the
uniqueness of values on one side of the join condition.

The ref_or_null strategy usually appears when joining against a column that can be
NULL. Generally, you should avoid joining against NULLable columns.

The ref strategy can give some good performance gains when the number of rows
returned from the data access is relatively small. The ref strategy appears in the
following situations:

1. when joining against two non-unique, but indexed fields
2. when supplying a non-unique index with a constant value

Execute the following code in the mysql command line client:

EXPLAIN SELECT * FROM rental

WHERE rental_id IN (10,11,12)

AND rental_date = '2006-02-01' \G

You should see the following returned:

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: rental

 type: ref

possible_keys: PRIMARY,rental_date

 key: rental_date

 key_len: 8

 ref: const

 rows: 1

 Extra: Using where

1 row in set (0.02 sec)

listing 7.

Here you can see the ref access strategy being chosen. The optimizer had two
possible indexes (PRIMARY and rental_date) to choose from when determining an
optimal execution plan. Here, it chooses to supply the constant “2006-02-01” to
the rental_date index and retrieve the matched records, and then apply the
rental_id filter afterwards.

We get the ref access strategy (instead of a const strategy) because the rental_date
values in the rental_date index are not unique. If the index record values for
rental_date were also NULLable, we might have seen the ref_or_null here.

The index_merge access strategy

The index_merge access strategy is the biggest improvement to the MySQL
optimizer since MySQL 5.0.

Before MySQL 5.0, the optimizer could only use a single index per table in a
SELECT expression, even if more than one index could fulfill part of the query's
needs.

With MySQL 5.0+, the optimizer can make use of multiple indexes on a table's fields
within a single query.

As an example, execute the following EXPLAIN SELECT in the client:

EXPLAIN SELECT * FROM rental

WHERE rental_id IN (10,11,12)

OR rental_date = '2006-02-01' \G

Notice the only difference between this query and the previous one is the use of OR
instead of AND in the WHERE expression.

You should see the following output from EXPLAIN:

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: rental

 type: index_merge

possible_keys: PRIMARY,rental_date

 key: rental_date,PRIMARY

 key_len: 8,4

 ref: NULL

 rows: 4

 Extra: Using sort_union(rental_date,PRIMARY); Using where

1 row in set (0.02 sec)

listing 8.

It may not look like much, but the execution plan shown above is a major
improvement over <= MySQL 4.1. The index_merge access strategy sees that
there are two indexes (PRIMARY and rental_date) that could be used to filter -- or
winnow, in geek terms -- the resulting data set.

Before MySQL 5.0, the optimizer would be forced to choose one or the other index
to use for evaluating the SELECT. In the case of OR conditions, however, the
optimizer would be forced to use a full table scan because an additional pass over
the result set is necessary to fulfill the OR (union) condition. Here, however, both
indexes can be queried together in a single pass.

Suggestion: If your SELECTs contain OR conditions and you are not on
MySQL 5.0, consider upgrading to MySQL 5.+

The unique_subquery and index_subquery access strategies

These access strategies appear when you use subqueries in your SELECT statement
(duh.)

Subqueries yielding a unique set of data will produce unique_subquery, otherwise
index_subquery

● unique_subquery is slightly better performing because the optimizer can
entirely replace the subquery with a set of constants
○ So it becomes a range condition

● Generally, a join will be better performing though...
○ Don't believe me? OK.. I'll show ya.

Here is an example of a query which gets some customer information and payment
amount for payments made on rentals between June 14 and 16, 2005:

SELECT

 c.customer_id

, c.first_name

, c.last_name

, p.amount

FROM customer c

INNER JOIN payment p

ON c.customer_id = p.customer_id

WHERE p.rental_id IN (

 SELECT rental_id FROM rental

 WHERE rental_date BETWEEN '2005-06-14' AND '2005-06-16'

)\G

If you execute the above query, you will find that 364 records are returned. Likely,
you will see average execution times of around .09 to .10 seconds. Let's examine
the EXPLAIN output for the above query. You should see the output in listing 10.

*************************** 1. row ***************************

 id: 1

 select_type: PRIMARY

 table: c

 type: ALL

possible_keys: PRIMARY

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 541

 Extra:

*************************** 2. row ***************************

 id: 1

 select_type: PRIMARY

 table: p

 type: ref

possible_keys: idx_fk_customer_id

 key: idx_fk_customer_id

 key_len: 2

 ref: sakila.c.customer_id

 rows: 15

 Extra: Using where

*************************** 3. row ***************************

 id: 2

 select_type: DEPENDENT SUBQUERY

 table: rental

 type: unique_subquery

possible_keys: PRIMARY,rental_date

 key: PRIMARY

 key_len: 4

 ref: func

 rows: 1

 Extra: Using where

3 rows in set (0.00 sec)

listing 10.

There's a number of interesting things to note about the execution plan chosen by
the optimizer in listing 10:

1) The optimizer chooses to first access the customer table, c, using a full table
scan strategy

2) The IN() subquery (non-correlated) in the WHERE clause yields a
unique_subquery access strategy that generates a list of unique rental_ids

3) In the unique_subquery set (row 3), both the PRIMARY and the rental_date
indexes are available to the optimizer to reduce the set to an appropriate set
of rental_id values. The optimizer chooses to use the PRIMARY key on
rental_id, even though a range access could be used on rental_date index

4) In row 2, which represents the payment table set, we see a ref access
strategy deployed on the customer_id index. This makes sense, since the
index customer_id is non-unique and not-nullable. However, notice that in
the Extra column you see “Using where”. Why?

The reason “Using where” shows up in row 2's Extra column is because once the ref
access strategy is employed on the customer_id column, an additional check must
be made to match on the range of rental_id values generated from the subquery in
row 3.

OK, now let's rewrite the query using a standard join to the rental table in place of
the IN() subquery and show the EXPLAIN output:

EXPLAIN SELECT

 c.customer_id

, c.first_name

, c.last_name

, p.amount

FROM customer c

INNER JOIN payment p

ON c.customer_id = p.customer_id

INNER JOIN rental r

ON p.rental_id = r.rental_id

WHERE r.rental_date BETWEEN '2005-06-14' AND '2005-06-16'\G

)\G

You should see the output in listing 11.

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: r

 type: range

possible_keys: PRIMARY,rental_date

 key: rental_date

 key_len: 8

 ref: NULL

 rows: 364

 Extra: Using where; Using index

*************************** 2. row ***************************

 id: 1

 select_type: SIMPLE

 table: p

 type: ref

possible_keys: idx_fk_customer_id,fk_payment_rental

 key: fk_payment_rental

 key_len: 5

 ref: sakila.r.rental_id

 rows: 1

 Extra: Using where

*************************** 3. row ***************************

 id: 1

 select_type: SIMPLE

 table: c

 type: eq_ref

possible_keys: PRIMARY

 key: PRIMARY

 key_len: 2

 ref: sakila.p.customer_id

 rows: 1

 Extra:

3 rows in set (0.00 sec)

listing 11.

Working through listing 11, we now see that the range access strategy is first used
on the rental table, using the rental_date index. Then, a nested loops join algorithm
works its way through a ref access into the payment table, p, and then finally into
the customer table, c, via an eq_ref access strategy.

The optimizer is telling us that the estimated number of rows to be returned is
364 * 1 * 1 = 364. This is, actually, the correct number of rows returned by the
query.

Go ahead and execute the actual query above and compare the speed vs. the one
with the IN() subquery. You should notice a significant increase in performance.

Correlated Subqueries and why they're evil

Here's an example of a standard subquery in the WHERE clause. The query grabs
the last payment made by a customer, along with the customer's first and last
name.

The subquery references a field in the main (outer, or primary) result set. This
reference is called a correlation, and thus subqueries of this type are called
correlated subqueries.

EXPLAIN SELECT

 p.payment_id, p.amount, p.payment_date, c.first_name, c.last_name

FROM payment p

INNER JOIN customer c

ON p.customer_id = c.customer_id

WHERE p.payment_date = (

 SELECT MAX(payment_date)

 FROM payment

 WHERE payment.customer_id = p.customer_id

)\G

The output from EXPLAIN should look like that of listing 12.

*************************** 1. row ***************************

 id: 1

 select_type: PRIMARY

 table: c

 type: ALL

possible_keys: PRIMARY

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 541

 Extra:

*************************** 2. row ***************************

 id: 1

 select_type: PRIMARY

 table: p

 type: ref

possible_keys: idx_fk_customer_id

 key: idx_fk_customer_id

 key_len: 2

 ref: sakila.c.customer_id

 rows: 14

 Extra: Using where

*************************** 3. row ***************************

 id: 2

 select_type: DEPENDENT SUBQUERY

 table: payment

 type: ref

possible_keys: idx_fk_customer_id

 key: idx_fk_customer_id

 key_len: 2

 ref: sakila.p.customer_id

 rows: 14

 Extra:

3 rows in set (0.00 sec)

listing 12.

In listing 12 you will notice there are three rows in the EXPLAIN output. The
optimizer has chosen, in this case, to first access the customer table using a full
table scan strategy, then seek into the payment.idx_fk_customer_id index using a
ref access strategy. Finally, in the third row, you see the correlated subquery,
denoted as select_type = DEPENDENT SUBQUERY. The ref column shows the
column used as the correlation: sakila.p.customer_id.

What is actually going on with the dependent subquery, however, is not particularly
optimal, and has to do with deficiencies in the MySQL optimizer with regards to
correlated subqueries.

The correlated subquery will be executed once for each matched row in the second
set of information, which happens to be the entire payments table. Therefore, in
our sakila sample database, the correlated subquery will be executed 16,044
times!

Go ahead and execute the above SELECT statement without the EXPLAIN a few
times. I think you'll find that the average execution time is about .5 seconds.

How can we re-write the correlated subquery to remove this performance impact?

One way of doing it is to use a derived table -- which is a subquery in the FROM
clause:

EXPLAIN SELECT

 p.payment_id, p.amount, p.payment_date, c.first_name, c.last_name

FROM payment p

INNER JOIN (

 SELECT customer_id, MAX(payment_date) AS payment_date

 FROM payment

 GROUP BY customer_id

) AS last_orders

ON p.customer_id = last_orders.customer_id

AND p.payment_date = last_orders.payment_date

INNER JOIN customer c

ON p.customer_id = c.customer_id\G

You should see something very similar to listing 13 in the output.

*************************** 1. row ***************************

 id: 1

 select_type: PRIMARY

 table: <derived2>

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 599

 Extra:

*************************** 2. row ***************************

 id: 1

 select_type: PRIMARY

 table: c

 type: eq_ref

possible_keys: PRIMARY

 key: PRIMARY

 key_len: 2

 ref: last_orders.customer_id

 rows: 1

 Extra:

*************************** 3. row ***************************

 id: 1

 select_type: PRIMARY

 table: p

 type: ref

possible_keys: idx_fk_customer_id

 key: idx_fk_customer_id

 key_len: 2

 ref: sakila.c.customer_id

 rows: 15

 Extra: Using where

*************************** 4. row ***************************

 id: 2

 select_type: DERIVED

 table: payment

 type: index

possible_keys: NULL

 key: idx_fk_customer_id

 key_len: 2

 ref: NULL

 rows: 16451

 Extra:

4 rows in set (0.11 sec)

listing 13.

Anyone notice how much time the optimizer took to generate the execution
plan in listing 13? Yep, that's .11 seconds...

So, let's walk through what listing 13 is telling us. Unlike listing 12, we actually
start reading this EXPLAIN output with the last row in the output -- the row which
represents the derived table containing the customer_id and last payment date set.

The EXPLAIN output in row 4 tells us that the derived table is generated by using an
index scan on the payment.customer_id column. We see an index scan because
we're not supplying any WHERE condition, and optimizer sees that it can use the
index on customer_id to fulfill the GROUP BY in the derived table.

For a derived table of this sort, the optimizer creates a temporary table to store the
result of the derivation. This temporary table is denoted in the EXPLAIN output in
the first row and given the name <derived2>.

From here on, the EXPLAIN output is fairly simple. The optimizer joins the derived
table result to the customer table, c, using an eq_ref access strategy on the
c.customer_id column, and then to the payment table, p, using a ref access strategy
on the p.customer_id column. You will notice in the Extra column in row 3 the words
“Using where” show up. Why?

Well, the join from the derived table to the payment table is on both customer_id
and payment_date. This “Using where” refers to the process of filtering the
payment records via the payment_date after the customer_id join has occurred.

So, go ahead and try running the derived table version of our query without
EXPLAIN in the command line client. I think you will find that the query executes
much faster than the correlated subquery version.

The reason for the better performance is because fewer accesses are being done in
the case of the derived table.

Discussion point:

How can we make the derived table query even faster?

Covering indexes

When MySQL can locate every field needed for a specific table within an index (as
opposed to the full table records) the index is known as a covering index.

Covering indexes are critically important for performance of certain queries and
joins. When a covering index is located and used by the optimizer, you will see
“Using index” show up in the Extra column of the EXPLAIN output.

Important distinction

Remember that “index” in the type column means a full index scan. “Using
index” in the Extra column means a covering index is being used.

The benefit of a covering index is that MySQL can grab the data directly from the
index records and does not need to do a lookup operation into the data file or
memory to get additional fields from the main table records.

One of the reasons that using SELECT * is not a recommended practice is because
by specifying columns instead of *, you have a better chance of hitting a covering
index. Consider these two statements, only differing by the * vs field list in SELECT:

EXPLAIN SELECT * FROM rental WHERE rental_date = '2005-06-14'\G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: rental

 type: ref

possible_keys: rental_date

 key: rental_date

 key_len: 8

 ref: const

 rows: 1

 Extra:

1 row in set (0.00 sec)

listing 14.

EXPLAIN SELECT rental_id, customer_id, inventory_id

FROM rental WHERE rental_date = '2005-06-14'\G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: rental

 type: ref

possible_keys: rental_date

 key: rental_date

 key_len: 8

 ref: const

 rows: 1

 Extra: Using index

1 row in set (0.00 sec)

listing 15.

By just specifying rental_id, customer_id, and inventory_id the optimizer is able to
use the rental_date index as a covering index.

Win a book question:

Why is this a covering index? The rental_date index contains rental_date,
customer_id, and inventory_id. But, we asked for those fields AND rental_id...

Using temporary and Using filesort

Let's find out the number of English-language films in each price rate, ordered by
the rental rate.

Before we do, however, let's first issue the following commands in the client:

FLUSH STATUS;
SHOW STATUS LIKE 'Created_tmp%';

You should see the following output:

+-------------------------+-------+

| Variable_name | Value |

+-------------------------+-------+

| Created_tmp_disk_tables | 0 |

| Created_tmp_files | 0 |

| Created_tmp_tables | 1 |

+-------------------------+-------+

3 rows in set (0.00 sec)

The FLUSH STATUS command will reset certain counters that we're going to be
keeping an eye on. Two of those counters is the Created_tmp_tables and
Created_tmp_disk_tables status counters, which you see displayed above. Note
that the SHOW STATUS command itself creates a temporary table, as evidenced by
the value of 1 in Created_tmp_tables. OK, on to the SQL code.

Execute the following code in the mysql client:

SELECT rental_rate, COUNT(*) AS num_films

FROM film

WHERE language_id = 1

GROUP BY rental_rate

ORDER BY rental_rate DESC;

you'll see the following result set:

+-------------+-----------+

| rental_rate | num_films |

+-------------+-----------+

| 4.99 | 336 |

| 2.99 | 323 |

| 0.99 | 341 |

+-------------+-----------+

3 rows in set (0.05 sec)

Before we look at the execution plan, let's first take a look to see what happened to
our status counter variables. Re-execute the SHOW STATUS command, and you
should see the following:

+-------------------------+-------+

| Variable_name | Value |

+-------------------------+-------+

| Created_tmp_disk_tables | 0 |

| Created_tmp_files | 0 |

| Created_tmp_tables | 3 |

+-------------------------+-------+

3 rows in set (0.00 sec)

Subtracting 2 from the counter for the two executions of SHOW STATUS, we see that
our SELECT expression caused MySQL to created a temporary table in memory.

Now, let's take a look at the EXPLAIN output:

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: film

 type: ref

possible_keys: idx_fk_language_id

 key: idx_fk_language_id

 key_len: 1

 ref: const

 rows: 511

 Extra: Using where; Using temporary; Using filesort

1 row in set (0.00 sec)

listing 16.

There should be nothing new about the EXPLAIN output above except for the
phrases “Using temporary” and “Using filesort” which appear in the Extra
column.

I think it should be obvious by now what the “Using temporary” phrase refers to:
the temporary in-memory table we noticed had been created via the SHOW STATUS
output. The “Using filesort” phrase means that MySQL did not have data from the
idx_fk_language_id index in an order needed by the query -- in this case, the
optimizer needed a sorted list of rental_rate values since the query is grouped and
ordered by that field.

So, you might be wondering at what point you see the Created_tmp_disk_tables
counter increase, instead of the Created_tmp_tables counter. The
Created_tmp_disk_tables status counter is incremented when size of the temporary
table created to do grouping and/or sorting is greater than the
max_heap_table_size variable or the tmp_table_size variable.

If you notice the Created_tmp_disk_tables counter increasing dramatically, it is
likely that you need to increase both of those server variables.

If you notice the Created_tmp_tables counter increasing dramatically, typically you
have a case of a necessary index not being available for a frequently executed
query.

Let's assume that we execute our grouping query on rental_rates quite frequently.
How do we remove the need for a temporary table and filesort from our execution
plan?

Well, one strategy we can try is to add the rental_rate field to our
idx_fk_language_id index. Let's do that:

ALTER TABLE film

DROP INDEX idx_fk_language_id

, ADD INDEX idx_language_rental_rate (language_id, rental_rate);

Let's see how our EXPLAIN output changed:

mysql> EXPLAIN SELECT rental_rate, COUNT(*) AS num_films

 -> FROM film

 -> WHERE language_id = 1

 -> GROUP BY rental_rate

 -> ORDER BY rental_rate DESC\G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: film

 type: ref

possible_keys: idx_language_rental_rate

 key: idx_language_rental_rate

 key_len: 1

 ref: const

 rows: 469

 Extra: Using where; Using index

1 row in set (0.02 sec)

listing 17.

Voila! No more temporary table or filesort. Let's execute the query and double
check the STATUS counters:

mysql> SELECT rental_rate, COUNT(*) AS num_films

 -> FROM film

 -> WHERE language_id = 1

 -> GROUP BY rental_rate

 -> ORDER BY rental_rate DESC;

+-------------+-----------+

| rental_rate | num_films |

+-------------+-----------+

| 4.99 | 336 |

| 2.99 | 323 |

| 0.99 | 341 |

+-------------+-----------+

3 rows in set (0.01 sec)

mysql> SHOW STATUS LIKE 'Created_tmp%';

+-------------------------+-------+

| Variable_name | Value |

+-------------------------+-------+

| Created_tmp_disk_tables | 0 |

| Created_tmp_files | 0 |

| Created_tmp_tables | 4 |

+-------------------------+-------+

3 rows in set (0.00 sec)

Excellent. Our tmp tables only increased by one -- for the SHOW STATUS command.
So, we have successfully eliminated temporary table usage by creating an index on
language_id and rental_rate.

But, wait. What if we wanted to see the number of films, in any language, grouped
by the rental_rate?

Let's see what happens if we remove the WHERE language_id = 1 clause. See
listing 17 for the EXPLAIN output.

mysql> EXPLAIN SELECT rental_rate, COUNT(*) AS num_films

 -> FROM film

 -> GROUP BY rental_rate\G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: film

 type: index

possible_keys: NULL

 key: idx_language_rental_rate

 key_len: 3

 ref: NULL

 rows: 938

 Extra: Using index; Using temporary; Using filesort

1 row in set (0.00 sec)

listing 17.

Oops. The temporary table showed up again along with the filesort.

Discussion point:

Why, if the optimizer has a covering index with the idx_language_rental_rate
index does the temporary table and filesort happen?

Effects of functions operating on indexed columns

A final topic of discusssion when looking at the execution plans generated by the
optimizer is the effect of using a function upon an indexed column.

Let's say we want to see the films which begin with “Tr”. In the film table, we have
an index on the title column. Here are two queries which produce identical results,
but which have very different execution plans:

EXPLAIN SELECT * FROM film WHERE title LIKE 'Tr%'\G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: film

 type: range

possible_keys: idx_title

 key: idx_title

 key_len: 767

 ref: NULL

 rows: 15

 Extra: Using where

1 row in set (0.03 sec)

listing 18.

EXPLAIN SELECT * FROM film WHERE LEFT(title, 2) = 'Tr'\G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: film

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 938

 Extra: Using where

1 row in set (0.00 sec)

listing 19.

As you can see, using a function on an indexed column eliminates the ability of the
optimizer to use the index on that column.

Always attempt to isolate indexed columns without being operated on by a function.

	Target Practice
	Setup
	Download materials and MySQL Community Server
	Download workshop materials
	Download MySQL Community Server

	Graphical overview of the MySQL Server
	The EXPLAIN Command
	The Basics of EXPLAIN
	Important columns in EXPLAIN output
	The access strategies (type column values)
	The const and system access strategies
	Constant propogation
	The range access strategy
	The scan vs seek dilemma
	The ALL access strategy (Full Table Scan)
	The eq_ref access strategy
	The ref and ref_or_null access strategies
	The index_merge access strategy
	The unique_subquery and index_subquery access strategies
	Correlated Subqueries and why they're evil
	Covering indexes
	Using temporary and Using filesort
	Effects of functions operating on indexed columns

